1
|
Patel K, Stotter J, Pali MC, Giannopulu I. Imagine going left versus imagine going right: whole-body motion on the lateral axis. Sci Rep 2024; 14:31558. [PMID: 39738135 PMCID: PMC11686341 DOI: 10.1038/s41598-024-57220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/15/2024] [Indexed: 01/01/2025] Open
Abstract
Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery. Following the experimental procedure, 36 healthy participants were instructed and trained to imagine moving left and right from a first-person perspective. On average, greater beta oscillatory activity in the parietal region was observed during right motor imagery compared to left motor imagery. Furthermore, lateral whole-body motion imagery is associated with the posterior multimodal somatosensory parietal areas, which showed significantly more prominent cortico-cortical interconnections when performing right than left motor imagery, as indicated by Phase-Locked Value (PLV) analysis. The findings suggest that the mental simulation of lateral movements, reflecting immature neurocognitive schemata, might engender non-grounded and non-embedded somatosensory and kinesthetic representations that would be associated with the lateralisation of the multimodal cortical vestibular network.
Collapse
Affiliation(s)
- K Patel
- School of Human Sciences and Humanities, University of Houston, Houston, 77001, USA
| | - J Stotter
- Interdisciplinary Centre for the Artificial Mind (iCAM), Robina, 4229, Australia
| | - M C Pali
- Research Centre On Stroke Rehabilitation, MUI, 6020, Innsbruck, Austria
| | - I Giannopulu
- Creative Robotics Lab, UNSW, Sydney, 2021, Australia.
- Clinical Research and Technological Innovation, 75016, Paris, France.
| |
Collapse
|
2
|
Zangeneh Soroush M, Zeng Y. EEG-based study of design creativity: a review on research design, experiments, and analysis. Front Behav Neurosci 2024; 18:1331396. [PMID: 39148896 PMCID: PMC11325867 DOI: 10.3389/fnbeh.2024.1331396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 08/17/2024] Open
Abstract
Brain dynamics associated with design creativity tasks are largely unexplored. Despite significant strides, there is a limited understanding of the brain-behavior during design creation tasks. The objective of this paper is to review the concepts of creativity and design creativity as well as their differences, and to explore the brain dynamics associated with design creativity tasks using electroencephalography (EEG) as a neuroimaging tool. The paper aims to provide essential insights for future researchers in the field of design creativity neurocognition. It seeks to examine fundamental studies, present key findings, and initiate a discussion on associated brain dynamics. The review employs thematic analysis and a forward and backward snowball search methodology with specific inclusion and exclusion criteria to select relevant studies. This search strategy ensured a comprehensive review focused on EEG-based creativity and design creativity experiments. Different components of those experiments such as participants, psychometrics, experiment design, and creativity tasks, are reviewed and then discussed. The review identifies that while some studies have converged on specific findings regarding EEG alpha band activity in creativity experiments, there remain inconsistencies in the literature. The paper underscores the need for further research to unravel the interplays between these cognitive processes. This comprehensive review serves as a valuable resource for readers seeking an understanding of current literature, principal discoveries, and areas where knowledge remains incomplete. It highlights both positive and foundational aspects, identifies gaps, and poses lingering questions to guide future research endeavors.
Collapse
Affiliation(s)
- Morteza Zangeneh Soroush
- Concordia Institute for Information Systems Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC, Canada
| | - Yong Zeng
- Concordia Institute for Information Systems Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC, Canada
| |
Collapse
|
3
|
Giannopulu I, Lee K, Abdi E, Noori-Hoshyar A, Brotto G, Van Velsen M, Lin T, Gauchan P, Gorman J, Indelicato G. Predicting neural activity of whole body cast shadow through object cast shadow in dynamic environments. Front Psychol 2024; 15:1149750. [PMID: 38646121 PMCID: PMC11027993 DOI: 10.3389/fpsyg.2024.1149750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/23/2024] [Indexed: 04/23/2024] Open
Abstract
Shadows, as all other objects that surround us, are incorporated into the body and extend the body mediating perceptual information. The current study investigates the hypothesis according to which the perception of object shadows would predict the perception of body shadows. 38 participants (19 males and 19 females) aged 23 years on average were immersed into a virtual reality environment and instructed to perceive and indicate the coincidence or non coincidence between the movement of a ball shadow with regard to ball movement on the one hand, and between their body shadow and their body position in space on the other. Their brain activity was recording via a 32-channel EEG system, in which beta (13.5-30 Hz) oscillations were analyzed. A series of Multiple Regression Analysis (MRA) revealed that the beta dynamic oscillations patterns of the bilateral occipito-parieto-frontal pathway associated with the perception of ball shadow appeared to be a significant predictor of the increase in beta oscillations across frontal areas related to the body shadow perception and the decrease in beta oscillations across frontal areas connected to the decision making of the body shadow. Taken together, the findings suggest that inferential thinking ability relative to body shadow would be reliably predicted from object shadows and that the bilateral beta oscillatory modulations would be indicative of the formation of predictive neural frontal assemblies, which encode and infer body shadow neural representation, that is, a substitution of the physical body.
Collapse
Affiliation(s)
- Irini Giannopulu
- Creative Robotics Lab, UNSW, Sydney, NSW, Australia
- Clinical Research and Technological Innovation Centre, RCIT, Paris, France
| | - Khai Lee
- Department of Mechanical, Aerospace and Mechatronics Engineering, Monash University Australia, Melbourne, VIC, Australia
| | - Elahe Abdi
- Department of Mechanical, Aerospace and Mechatronics Engineering, Monash University Australia, Melbourne, VIC, Australia
| | - Azadeh Noori-Hoshyar
- School of Engineering, Information Technology and Physical Sciences, Federation University, Ballarat, VIC, Australia
| | - Gaelle Brotto
- Interdisciplinary Centre for the Artificial Mind (iCAM), Gold Coast, QLD, Australia
| | - Mathew Van Velsen
- Interdisciplinary Centre for the Artificial Mind (iCAM), Gold Coast, QLD, Australia
| | - Tiffany Lin
- Interdisciplinary Centre for the Artificial Mind (iCAM), Gold Coast, QLD, Australia
| | - Priya Gauchan
- Interdisciplinary Centre for the Artificial Mind (iCAM), Gold Coast, QLD, Australia
| | - Jazmin Gorman
- Interdisciplinary Centre for the Artificial Mind (iCAM), Gold Coast, QLD, Australia
| | - Giuseppa Indelicato
- Interdisciplinary Centre for the Artificial Mind (iCAM), Gold Coast, QLD, Australia
| |
Collapse
|
4
|
Lee KW. Effectiveness of gamification and selection of appropriate teaching methods of creativity: Students' perspectives. Heliyon 2023; 9:e20420. [PMID: 37780748 PMCID: PMC10539980 DOI: 10.1016/j.heliyon.2023.e20420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
Complex creativity and multiple learning objectives often require combining several teaching methods, and gamification may be an effective teaching strategy for enhancing learning. However, few studies have examined the combined effects of implementing gamification and multiple teaching methods in a course from students' perspectives. Therefore, this study implemented gamification and six teaching methods of enhancing college students' creativity in university creativity and innovation course in November and December 2021 and aimed to examine the effects on their creativity, collaboration, and communication skills and used the Analytical Hierarchy Process to identify more effective teaching methods corresponding to the learning objectives from students' perspectives. The results showed that students perceive that gamification could stimulate their motivation, attitudes, and interest in learning and enhance their creativity, collaboration, and communication skills. Furthermore, Mandala thinking was the most effective teaching method for the overall goal. In contrast, the most effective teaching methods for the creativity, collaboration, and communication skills learning objectives were the SCAMPER technique, balloon competition, and Mandala thinking, respectively. The results provide essential references for selecting effective teaching methods that meet the teaching objectives.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Center for the Liberal Arts, College of General Education, National Kaohsiung University of Science and Technology, Taiwan
| |
Collapse
|
5
|
Ramon C, Graichen U, Gargiulo P, Zanow F, Knösche TR, Haueisen J. Spatiotemporal phase slip patterns for visual evoked potentials, covert object naming tasks, and insight moments extracted from 256 channel EEG recordings. Front Integr Neurosci 2023; 17:1087976. [PMID: 37384237 PMCID: PMC10293627 DOI: 10.3389/fnint.2023.1087976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Phase slips arise from state transitions of the coordinated activity of cortical neurons which can be extracted from the EEG data. The phase slip rates (PSRs) were studied from the high-density (256 channel) EEG data, sampled at 16.384 kHz, of five adult subjects during covert visual object naming tasks. Artifact-free data from 29 trials were averaged for each subject. The analysis was performed to look for phase slips in the theta (4-7 Hz), alpha (7-12 Hz), beta (12-30 Hz), and low gamma (30-49 Hz) bands. The phase was calculated with the Hilbert transform, then unwrapped and detrended to look for phase slip rates in a 1.0 ms wide stepping window with a step size of 0.06 ms. The spatiotemporal plots of the PSRs were made by using a montage layout of 256 equidistant electrode positions. The spatiotemporal profiles of EEG and PSRs during the stimulus and the first second of the post-stimulus period were examined in detail to study the visual evoked potentials and different stages of visual object recognition in the visual, language, and memory areas. It was found that the activity areas of PSRs were different as compared with EEG activity areas during the stimulus and post-stimulus periods. Different stages of the insight moments during the covert object naming tasks were examined from PSRs and it was found to be about 512 ± 21 ms for the 'Eureka' moment. Overall, these results indicate that information about the cortical phase transitions can be derived from the measured EEG data and can be used in a complementary fashion to study the cognitive behavior of the brain.
Collapse
Affiliation(s)
- Ceon Ramon
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
- Regional Epilepsy Center, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Uwe Graichen
- Department of Biostatistics and Data Science, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Science, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Thomas R. Knösche
- Max Planck Institute for Human Cognitive and Neurosciences, Leipzig, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| |
Collapse
|