1
|
Adelfio M, Callen GE, Diaz AR, Paster BJ, He X, Hasturk H, Ghezzi CE. Underscoring long-term host-microbiome interactions in a physiologically relevant gingival tissue model. NPJ Biofilms Microbiomes 2025; 11:9. [PMID: 39789014 PMCID: PMC11718163 DOI: 10.1038/s41522-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
The human body houses many distinct and interconnecting microbial populations with long-lasting systemic effects, where the oral cavity serves as a pathogens' reservoir. The correlation of different disease states strongly supports the need to understand the interplay between the oral tissue niche and microbiome. Despite efforts, the recapitulation of gingival architecture and physiological characteristics of the periodontal niche has yet to be accomplished by traditional cultural strategies. Here, we are showing for the first time the investigation of host-microbiome interactions in healthy conditions within a human oral tissue model over seven days. Our results indicated long-term host and microbiome viability, host barrier integrity, phenotypic functional response, and preservation of healthy microbial populations and interbacterial dialogs. This in vitro platform can maintain tissue homeostasis at the interface of the periodontal niche, thus, offering opportunities to identify predictive disease biomarkers and to develop intervention strategies to promote oral and overall health.
Collapse
Affiliation(s)
- M Adelfio
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - G E Callen
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - A R Diaz
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - B J Paster
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - X He
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - H Hasturk
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - C E Ghezzi
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA.
| |
Collapse
|
2
|
Carella A, Carroll KC, Munson E. Update on novel validly published and included bacterial taxa derived from human clinical specimens and taxonomic revisions published in 2023. J Clin Microbiol 2024; 62:e0100424. [PMID: 39495305 PMCID: PMC11633100 DOI: 10.1128/jcm.01004-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Taxonomy is a systematic practice in which microorganisms are granted names to facilitate and standardize multi-disciplinary communication. We summarize novel bacterial taxa derived from human clinical material that were published in peer-reviewed literature and/or included by the International Journal of Systematic and Evolutionary Microbiology during calendar year 2023, as well as taxonomic revisions that have been published/included by the same entity. While the majority of newly discovered facultative and anaerobic organisms were derived from microbiome surveillance, noteworthy novel taxa in the realm of pathogenicity potential include those related to Aerococcus spp., several Corynebacterium spp., Exercitatus varius gen. nov., sp. nov., and Mycoplasma phocimorsus sp. nov. With respect to nomenclature revision, the Bacillus and Clostridium genera continue to be visited annually. Creation of novel anaerobic Gram-negative bacillus genera Hallella, Hoylesella, Leyella, Segatella, and Xylanibacter impacted several Bacteroides spp. and Prevotella spp. Additional studies are necessary to ascertain the clinical significance of several of these microbes.
Collapse
Affiliation(s)
- Arianna Carella
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Correction: Head Lice of Pygmies Reveal the Presence of Relapsing Fever Borreliae in the Republic of Congo. PLoS Negl Trop Dis 2024; 18:e0012561. [PMID: 39365763 PMCID: PMC11452029 DOI: 10.1371/journal.pntd.0012561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pntd.0005142.].
Collapse
|
4
|
Cassas MS, Jonas LC, Anderson CJ, Schmitz-Esser S, Youngs CR. Temporal changes in ewe vaginal microbiota throughout gestation. Front Microbiol 2024; 15:1359678. [PMID: 38426061 PMCID: PMC10901984 DOI: 10.3389/fmicb.2024.1359678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Numerous factors are known to influence reproductive efficiency in ewes, but few studies have investigated the potential role of vaginal microbiota in sheep reproductive success. The objective of this study was to thoroughly characterize the ewe vaginal microbiota throughout the course of pregnancy. Methods Vaginal samples were collected from 31 pregnant Hampshire and Hampshire X Suffolk crossbred ewes on a weekly basis from pre-breeding to pregnancy testing and then biweekly until just after lambing. To characterize the vaginal microbial communities, DNA was extracted and 16S rRNA gene Illumina MiSeq amplicon sequencing was performed. Results and Discussion Alpha diversity metrics indicated an increase in species richness, evenness, and overall diversity throughout gestation. Distinct shifts in the bacterial communities were observed during gestation and were segregated into three periods: early gestation, a transitional period and mid/late gestation. During early gestation, Actinobacillus, Histophilus, and unclassified Leptotrichiaceae were found in greater relative abundance. During the transitional period, a population shift occurred characterized by increasing relative abundance of Streptococcus and Staphylococcus. During mid/late gestation, Staphylococcus, Streptococcus, and Ureaplasma had the greatest relative abundance. These shifts in the microbial population throughout the ewe's gestation are likely related to hormonal changes triggered by the growing conceptus, specifically increasing blood concentration of progesterone. The transitional period shift in vaginal microbial communities potentially aligns with the placental take-over of progesterone production from the corpus luteum at approximately day 50 after conception (gestational week 7). Understanding the observed variability of the vaginal microbiota throughout pregnancy will allow for future comparison of ewes that did not become pregnant or had abnormal pregnancies, which could lead to the discovery of potential bacterial biomarkers for pregnancy outcome; this understanding could also lead to development of probiotics to improve sheep reproductive success.
Collapse
Affiliation(s)
- Mackenzie S. Cassas
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Lucille C. Jonas
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Chiron J. Anderson
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Curtis R. Youngs
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Oren A, Göker M. Validation List no. 210. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2023; 73. [PMID: 37000643 DOI: 10.1099/ijsem.0.005812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Pezzuto JM, Dave A, Park EJ, Beyoğlu D, Idle JR. Short-Term Grape Consumption Diminishes UV-Induced Skin Erythema. Antioxidants (Basel) 2022; 11:2372. [PMID: 36552580 PMCID: PMC9774720 DOI: 10.3390/antiox11122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Over three million Americans are affected by skin cancer each year, largely as a result of exposure to sunlight. The purpose of this study was to determine the potential of grape consumption to modulate UV-induced skin erythema. With 29 human volunteers, we report that nine demonstrated greater resistance to UV irradiation of the skin after consuming the equivalent of three servings of grapes per day for two weeks. We further explored any potential relationship to the gut-skin axis. Alpha- and beta-diversity of the gut microbiome were not altered, but grape consumption modulated microbiota abundance, enzyme levels, and KEGG pathways. Striking differences in the microbiome and metabolome were discerned when comparing the nine individuals showing greater UV resistance with the 20 non-responders. Notably, three urinary metabolites, 2'-deoxyribonic acid, 3-hydroxyphenyl acetic and scyllo-inositol, were depressed in the UV-resistant group. A ROC curve revealed a 71.8% probability that measurement of urinary 2'-deoxyribonic acid identifies a UV skin non-responder. 2'-Deoxyribonic acid is cleaved from the DNA backbone by reactive oxygen species. Three of the nine subjects acquiring UV resistance following grape consumption showed a durable response, and these three demonstrated unique microbiomic and metabolomic profiles. Variable UV skin sensitivity was likely due to glutathione S-transferase polymorphisms. We conclude that a segment of the population is capable of demonstrating greater resistance to a dermal response elicited by UV irradiation as a result of grape consumption. It is uncertain if modulation of the gut-skin axis leads to enhanced UV resistance, but there is correlation. More broadly, it is reasonable to expect that these mechanisms relate to other health outcomes anticipated to result from grape consumption.
Collapse
Affiliation(s)
- John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Department of Medicine, UMass Chan Medical School—Baystate, Springfield, MA 01199, USA
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Diren Beyoğlu
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Jeffrey R. Idle
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|