1
|
Kong M, Zhai Y, Liu H, Zhang S, Chen S, Li W, Ma X, Ji Y. Insights into the mechanisms of angiogenesis in hepatoblastoma. Front Cell Dev Biol 2025; 13:1535339. [PMID: 40438141 PMCID: PMC12116456 DOI: 10.3389/fcell.2025.1535339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/02/2025] [Indexed: 06/01/2025] Open
Abstract
Hepatoblastoma (HB), the most common pediatric liver malignancy, is characterized by aggressive growth and metastasis driven by complex angiogenic mechanisms. This review elucidates the pivotal role of angiogenesis in HB progression, emphasizing metabolic reprogramming, tumor microenvironment (TME) dynamics, and oncogenic signalling pathways. The Warburg effect in HB cells fosters a hypoxic microenvironment, stabilizing hypoxia-inducible factor-1α (HIF-1α) and upregulating vascular endothelial growth factor (VEGF), which synergistically enhances angiogenesis. Key pathways such as the Wnt/β-catenin, VEGF, PI3K/AKT, and JAK2/STAT3 pathways are central to endothelial cell proliferation, migration, and vascular maturation, whereas interactions with tumor-associated macrophages (TAMs) and pericytes further remodel the TME to support neovascularization. Long noncoding RNAs and glycolytic enzymes have emerged as critical regulators of angiogenesis, linking metabolic activity with vascular expansion. Anti-angiogenic therapies, including VEGF inhibitors and metabolic pathway-targeting agents, show preclinical promise but face challenges such as resistance and off-target effects. Future directions advocate for dual-target strategies, spatial multiomics technologies to map metabolic-angiogenic crosstalk, and personalized approaches leveraging biomarkers for risk stratification. This synthesis underscores the need for interdisciplinary collaboration to translate mechanistic insights into durable therapies, ultimately improving outcomes for HB patients.
Collapse
Affiliation(s)
- Meng Kong
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Yunpeng Zhai
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Hongzhen Liu
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Shisong Zhang
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Shuai Chen
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Wenfei Li
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Ma
- Department of Respiratory Disease, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Jinan Key Laboratory of Pediatric Respiratory Diseases, Jinan Children’s Hospital, Jinan, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhan H, Xie D, Yan Z, Yi Z, Xiang D, Niu Y, Liang X, Geng B, Wu M, Xia Y, Jiang J. Fluid shear stress-mediated Piezo1 alleviates osteocyte apoptosis by activating the PI3K/Akt pathway. Biochem Biophys Res Commun 2024; 730:150391. [PMID: 39002199 DOI: 10.1016/j.bbrc.2024.150391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Glucocorticoid-induced osteoporosis serves as a primary cause for secondary osteoporosis and fragility fractures, representing the most prevalent adverse reaction associated with prolonged glucocorticoid use. In this study, to elucidate the impact and underlying mechanisms of fluid shear stress (FSS)-mediated Piezo1 on dexamethasone (Dex)-induced apoptosis, we respectively applied Dex treatment for 6 h, FSS at 9 dyne/cm2 for 30 min, Yoda1 treatment for 2 h, and Piezo1 siRNA transfection to intervene in MLO-Y4 osteocytes. Western blot analysis was used to assess the expression of Cleaved Caspase-3, Bax, Bcl-2, and proteins associated with the PI3K/Akt pathway. Additionally, qRT-PCR was utilized to quantify the mRNA expression levels of these molecules. Hoechst 33258 staining and flow cytometry were utilized to evaluate the apoptosis levels. The results indicate that FSS at 9 dyne/cm2 for 30 min significantly upregulates Piezo1 in osteocytes. Following Dex-induced apoptosis, the phosphorylation levels of PI3K and Akt are markedly suppressed. FSS-mediated Piezo1 exerts a protective effect against Dex-induced apoptosis by activating the PI3K/Akt pathway. Additionally, downregulating the expression of Piezo1 in osteocytes using siRNA exacerbates Dex-induced apoptosis. To further demonstrate the role of the PI3K/Akt signaling pathway, after intervention with the PI3K pathway inhibitor, the activation of the PI3K/Akt pathway by FSS-mediated Piezo1 in osteocytes was significantly inhibited, reversing the anti-apoptotic effect. This study indicates that under FSS, Piezo1 in MLO-Y4 osteocytes is significantly upregulated, providing protection against Dex-induced apoptosis through the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hongwei Zhan
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China; Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Daijun Xie
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Zhenxing Yan
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Zhi Yi
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Dejian Xiang
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Yongkang Niu
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Xiaoyuan Liang
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Bin Geng
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Meng Wu
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Yayi Xia
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Jin Jiang
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Liang T, Wang J, Zhu C, Hu Y, Gao Z, Da M. Prognosis and Clinical Significance of Piezo2 in Tumor: A Meta-analysis and Database Validation. Comb Chem High Throughput Screen 2024; 27:2912-2920. [PMID: 38347800 DOI: 10.2174/0113862073251440231025111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2024]
Abstract
OBJECTIVE The objective of this study is to assess the correlation between Piezo2 and tumors through a comprehensive meta-analysis and database validation. METHODS Case-control studies investigating the association between Piezo2 and tumors were obtained from various databases, including China National Knowledge Infrastructure (CNKI), SinoMed, Embase, Web of Science, The Cochrane Library, and PubMed. The search was performed from the inception of each database up until May 2023. Two researchers independently screened the literature, extracted data, and assessed the quality of the included studies. Metaanalysis of the included literature was conducted using Stata 12.0 software. Additionally, the Gene Expression Profiling Interactive Analysis (GEPIA) database predicted a correlation between Piezo2 expression and prognostic value in tumor patients. RESULTS A total of three studies, involving a combined sample size of 392 participants, were included in the meta-analysis. The findings revealed that the expression level of Piezo2 in tumor patients was not significantly associated with age, gender, or tumor size. However, it was found to be positively correlated with lymphatic invasion (OR = 7.89, 95%CI: 3.96-15.73) and negatively correlated with invasion depth (OR = 0.17, 95%CI: 0.06-0.47), TNM stage (OR = 0.48, 95%CI: 0.27-0.87), and histological grade (OR = 0.40, 95%CI: 0.21-0.77). Confirming these findings, the GEPIA database indicated that high expression of Piezo2 was associated with poor prognosis of disease-free survival in patients with colon adenocarcinoma (HR = 1.6, P = 0.049) and gastric cancer (HR = 1.6, P = 0.017). CONCLUSION Piezo2 may be associated with poor prognosis and clinicopathological parameters in tumor patients.
Collapse
Affiliation(s)
- Tong Liang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Junhong Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Baiyin, Baiyin, Gansu 730900, China
| | - Chenglou Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yongli Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhenhua Gao
- Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Baiyin, Baiyin, Gansu 730900, China
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1’s cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|