1
|
Lyu Y, Xie K, Shan X, Leng Y, Li L, Zhang X, Song R. Time-varying and speed-matched model for the evaluation of stroke-induced changes in ankle mechanics. J Biomech 2024; 165:111997. [PMID: 38377742 DOI: 10.1016/j.jbiomech.2024.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
The ankle mechanics (stiffness and moment) are modulated continuously when interacting with the environment during human walking. However, it remains unclear how ankle mechanics vary with walking speeds, and how they are affected by stroke. This study aimed to determine time-varying ankle stiffness and moment in stroke participants during walking, comparing them with healthy participants at matched speeds. A motion capture system, surface electromyography (EMG) system and force plates were used to measure biomechanics of seven healthy participants walking at 5 controlled speeds and ten patients with stroke at self-selected speeds. The ankle moment and stiffness during the stance phase were calculated using an EMG-driven musculoskeletal model. Surface equations of ankle moment and stiffness in healthy participants, with walking speed and stance phase as variables, were proposed based on polynomial fitting. Results showed that as walking speed increased, there was an increase in the ankle stiffness and moment of healthy participants during 77 %-89 % and 63 %-91 % of stance phase, respectively. Patients with stroke had lower ankle stiffness and moment at self-selected walking speed than healthy participants at 1.04 m/s walking speed during 52 %-87 % and 52 %-91 % of stance phase, respectively. At matched walking speed, the peak values of ankle stiffness and moment in patients with stroke were significantly less than those in healthy participants (p = 0.007; p = 0.028, respectively). This study proposes a novel approach to evaluate the ankle mechanics of patients with stroke using the speed-matched model of healthy participants and may provide insights into understanding speed-dependent movement mechanisms of human walking.
Collapse
Affiliation(s)
- Yueling Lyu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong province, School of Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Kaifan Xie
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong province, School of Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiyao Shan
- Department of Anatomy, Aichi Medical University, Japan
| | - Yan Leng
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710000, China
| | - Xianyi Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong province, School of Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rong Song
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong province, School of Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Ankle Kinematics Characterization in Children with Idiopathic Toe Walking: Does the Foot Model Change the Clinical Evaluation? Healthcare (Basel) 2023; 11:healthcare11060873. [PMID: 36981531 PMCID: PMC10047957 DOI: 10.3390/healthcare11060873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Idiopathic toe walking (ITW) is a gait deviation characterized by forefoot contact with the ground, sometimes observed in children, that alters ankle kinematics, possibly leading to health-related issues. When studying foot and ankle gait deviations, the adoption of a single-segment foot model entails a significant simplification of foot and ankle movement, and thus may potentially mask some important foot dynamics. Differences in ankle kinematics between single- (conventional gait model, PiG, or Davis) and multi-segment (Oxford foot model, OFM) foot models were investigated in children with ITW. Fourteen participants were enrolled in the study and underwent instrumented gait analysis. Children were asked to walk barefoot and while wearing a foot orthosis that modified the ankle movement pattern toward a more physiological one without blocking foot intrinsic motion. ITW gait abnormalities, e.g., the absence of heel rocker and the presence of anticipated forefoot rocker, were found/not found according to the foot model. Walking conditions significantly interacted with the foot model effect. Finally, the different characterization of gait abnormalities led to a different classification of ITW, with a possible impact on the clinical evaluation. Due to its closer adhesion to ankle anatomy and to its sensitivity to ITW peculiarities, OFM may be preferable for instrumented gait analysis in this population.
Collapse
|
3
|
Brasiliano P, Mascia G, Di Feo P, Di Stanislao E, Alvini M, Vannozzi G, Camomilla V. Impact of Gait Events Identification through Wearable Inertial Sensors on Clinical Gait Analysis of Children with Idiopathic Toe Walking. MICROMACHINES 2023; 14:277. [PMID: 36837977 PMCID: PMC9962364 DOI: 10.3390/mi14020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Idiopathic toe walking (ITW) is a gait deviation characterized by forefoot contact with the ground and excessive ankle plantarflexion over the entire gait cycle observed in otherwise-typical developing children. The clinical evaluation of ITW is usually performed using optoelectronic systems analyzing the sagittal component of ankle kinematics and kinetics. However, in standardized laboratory contexts, these children can adopt a typical walking pattern instead of a toe walk, thus hindering the laboratory-based clinical evaluation. With these premises, measuring gait in a more ecological environment may be crucial in this population. As a first step towards adopting wearable clinical protocols embedding magneto-inertial sensors and pressure insoles, this study analyzed the performance of three algorithms for gait events identification based on shank and/or foot sensors. Foot strike and foot off were estimated from gait measurements taken from children with ITW walking barefoot and while wearing a foot orthosis. Although no single algorithm stands out as best from all perspectives, preferable algorithms were devised for event identification, temporal parameters estimate and heel and forefoot rocker identification, depending on the barefoot/shoed condition. Errors more often led to an erroneous characterization of the heel rocker, especially in shoed condition. The ITW gait specificity may cause errors in the identification of the foot strike which, in turn, influences the characterization of the heel rocker and, therefore, of the pathologic ITW behavior.
Collapse
Affiliation(s)
- Paolo Brasiliano
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Rome, Italy
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Guido Mascia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Rome, Italy
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Paolo Di Feo
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Rome, Italy
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Eugenio Di Stanislao
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, 00135 Rome, Italy
- “ITOP SpA Officine Ortopediche”, Via Prenestina Nuova 307/A, 00036 Palestrina, Italy
| | - Martina Alvini
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, 00135 Rome, Italy
- “ITOP SpA Officine Ortopediche”, Via Prenestina Nuova 307/A, 00036 Palestrina, Italy
| | - Giuseppe Vannozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Rome, Italy
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Valentina Camomilla
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Rome, Italy
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome “Foro Italico”, 00135 Rome, Italy
| |
Collapse
|