1
|
Gauthier K, Strauch CJ, Bonse S, Bauer P, Heidler C, Niehl A. Detection and Quantification of Soil-Borne Wheat Mosaic Virus, Soil-Borne Cereal Mosaic Virus and Japanese Soil-Borne Wheat Mosaic Virus by ELISA and One-Step SYBR Green Real-Time Quantitative RT-PCR. Viruses 2024; 16:1579. [PMID: 39459913 PMCID: PMC11512275 DOI: 10.3390/v16101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Furoviruses are bipartite viruses causing mosaic symptoms and stunting in cereals. Infection with these viruses can lead to severe crop losses. The virus species Furovirus tritici with soil-borne wheat mosaic virus (SBWMV), Furovirus cerealis with soil-borne cereal mosaic virus (SBCMV) and Furovirus japonicum with Japanese soil-borne wheat mosaic virus (JSBWMV) and French barley mosaic virus (FBMV) as members are biologically and genetically closely related. Here, we develop SYBR green-based real-time quantitative RT-PCR assays to detect and quantify the RNA1 and RNA2 of the three virus species. Using experimental data in combination with Tm-value prediction and analysis of primer and amplicon sequences, we determine the capacity of our method to discriminate between the different viruses and evaluate its genericity to detect different isolates within the same virus species. We demonstrate that our method is suitable for discriminating between the different virus species and allows for the detection of different virus isolates. However, JSBWMV RNA1 primers may amplify SBWMV samples, bearing a risk for false positive detection with this primer. We also test the efficiency of polyclonal antibodies to detect the different viruses by ELISA and suggest that ELISA may be applied as a first screening to identify the virus. The real-time qRT-PCR assays developed provide the possibility to screen for quantitative disease resistance against SBCMV, SBWMV and JSBWMV. Moreover, with our method, we hope to promote research to unravel yet unresolved questions with respect to furovirus-host interaction concerning host range and resistance as well as regarding the role of multipartite genomes.
Collapse
Affiliation(s)
- Kevin Gauthier
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Brunswick, Germany
- Agroscope, Department of Plant Breeding, Route de Duillier 60, 1260 Nyon, Switzerland
| | - Claudia Janina Strauch
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Brunswick, Germany
| | - Sabine Bonse
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Brunswick, Germany
| | - Petra Bauer
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Brunswick, Germany
| | - Carolin Heidler
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Brunswick, Germany
| | - Annette Niehl
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Brunswick, Germany
| |
Collapse
|
2
|
da Silva SM, Amaral C, Malta-Luís C, Grilo D, Duarte AG, Morais I, Afonso G, Faria N, Antunes W, Gomes I, Sá-Leão R, Miragaia M, Serrano M, Pimentel C. A one-step low-cost molecular test for SARS-CoV-2 detection suitable for community testing using minimally processed saliva. Biol Methods Protoc 2024; 9:bpae035. [PMID: 38835855 PMCID: PMC11147803 DOI: 10.1093/biomethods/bpae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
The gold standard for coronavirus disease 2019 diagnostic testing relies on RNA extraction from naso/oropharyngeal swab followed by amplification through reverse transcription-polymerase chain reaction (RT-PCR) with fluorogenic probes. While the test is extremely sensitive and specific, its high cost and the potential discomfort associated with specimen collection made it suboptimal for public health screening purposes. In this study, we developed an equally reliable, but cheaper and less invasive alternative test based on a one-step RT-PCR with the DNA-intercalating dye SYBR Green, which enables the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly from saliva samples or RNA isolated from nasopharyngeal (NP) swabs. Importantly, we found that this type of testing can be fine-tuned to discriminate SARS-CoV-2 variants of concern. The saliva RT-PCR SYBR Green test was successfully used in a mass-screening initiative targeting nearly 4500 asymptomatic children under the age of 12. Testing was performed at a reasonable cost, and in some cases, the saliva test outperformed NP rapid antigen tests in identifying infected children. Whole genome sequencing revealed that the antigen testing failure could not be attributed to a specific lineage of SARS-CoV-2. Overall, this work strongly supports the view that RT-PCR saliva tests based on DNA-intercalating dyes represent a powerful strategy for community screening of SARS-CoV-2. The tests can be easily applied to other infectious agents and, therefore, constitute a powerful resource for an effective response to future pandemics.
Collapse
Affiliation(s)
- Sofia M da Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Cláudia Malta-Luís
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Diana Grilo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Américo G Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Inês Morais
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Gonçalo Afonso
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Nuno Faria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Wilson Antunes
- Centro de Investigação da Academia Militar (CINAMIL), Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Av. Dr Alfredo Bensaúde, Lisboa, 1849-012, Portugal
| | - Inês Gomes
- Centro de Investigação da Academia Militar (CINAMIL), Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Av. Dr Alfredo Bensaúde, Lisboa, 1849-012, Portugal
| | - Raquel Sá-Leão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Maria Miragaia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| |
Collapse
|
3
|
Rahmasari R, Raekiansyah M, Aliyah SH, Yodi P, Baihaqy F, Irhamsyah M, Sari KCDP, Suryadi H, Moi ML, Sauriasari R. Development and validation of cost-effective SYBR Green-based RT-qPCR and its evaluation in a sample pooling strategy for detecting SARS-CoV-2 infection in the Indonesian setting. Sci Rep 2024; 14:1817. [PMID: 38245603 PMCID: PMC10799953 DOI: 10.1038/s41598-024-52250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
A low-cost SYBR Green-based RT-qPCR method to detect SARS-CoV-2 were developed and validated. Primers targeting a conserved and vital region of the N genes of SARS-CoV-2 were designed. In-silico study was performed to analyse the compatibility of the selected primer pair with Indonesian SARS-CoV-2 genome sequences available from the GISAID database. We determined the linearity of our new assay using serial dilution of SARS-CoV-2 RNA from clinical samples with known virus concentration. The assay was then evaluated using clinically relevant samples in comparison to a commercial TaqMan-based test kit. Finally, we applied the assay in sample pooling strategies for SARS-CoV-2 detection. The SYBR Green-based RT-qPCR method was successfully developed with sufficient sensitivity. There is a very low prevalence of genome variation in the selected N primer binding regions, indicating their high conservation. The validation of the assay using clinical samples demonstrated similar performance to the TaqMan method suggesting the SYBR methods is reliable. The pooling strategy by combining 5 RNA samples for SARS-CoV-2 detection using the SYBR RT-qPCR methods is feasible and provides a high diagnostic yield. However, when dealing with samples having a very low viral load, it may increase the risk of missing positive cases.
Collapse
Affiliation(s)
- Ratika Rahmasari
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia.
| | | | - Siti Hana Aliyah
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| | - Priska Yodi
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| | - Fathan Baihaqy
- Helix Laboratory & Clinic, Depok, West Java, Indonesia
- Department of Microbiology, School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| | | | | | - Herman Suryadi
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rani Sauriasari
- Clinical Pharmacy and Social Pharmacy Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| |
Collapse
|