1
|
Gill K, Bindal E, Garg P, Kumar D, Bhattacharyya R, Banerjee D. Exposure of Bisphenols (BPA, BPB and BPC) in HepG2 Cells Results in Lysosomal Dysfunction and Lipid Accumulation. Cell Biol Int 2025; 49:709-722. [PMID: 40099744 DOI: 10.1002/cbin.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Nonalcoholic fatty liver disease poses a significant public health concern, as do the issues surrounding plastic usage. The bisphenols are reported to cause fat accumulation in the liver. However, literature is scanty about the effect of bisphenols on lysosomes or lysosomal functions. We predicted the interaction of bisphenols with lysosomal proteins available in the online databases using in silico tools. Molecular docking revealed that chosen Bisphenols interact with critical lysosomal proteins including lipid hydrolyzing enzymes. Following exposure of BPA, BPB and BPC to HepG2 cells fat accumulation and lysosomal functions were evaluated. Exposure to BPB and BPC results intracellular fat accumulation under experimental conditions like BPA. All three Bisphenols disturb lysosomal homeostasis perhaps by different mechanisms. Overall our results suggest that Bisphenols can also cause fat accumulation in liver by disturbing lysosomal homeostasis.
Collapse
Affiliation(s)
- Kiran Gill
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Eshika Bindal
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parul Garg
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Kumar
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Suteau V, Zuzic L, Hansen DH, Kjølbye LR, Sibilia P, Gourdin L, Briet C, Thomas M, Bourdeaud E, Tricoire-Leignel H, Schiøtt B, Carato P, Rodien P, Munier M. Effects and risk assessment of halogenated bisphenol A derivatives on human follicle stimulating hormone receptor: An interdisciplinary study. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135619. [PMID: 39217935 DOI: 10.1016/j.jhazmat.2024.135619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Halogenated bisphenol A (BPA) derivatives are produced during disinfection treatment of drinking water or are synthesized as flame retardants (TCBPA or TBBPA). BPA is considered as an endocrine disruptor especially on human follicle-stimulating hormone receptor (FSHR). Using a global experimental approach, we assessed the effect of halogenated BPA derivatives on FSHR activity and estimated the risk of halogenated BPA derivatives to the reproductive health of exposed populations. For the first time, we show that FSHR binds halogenated BPA derivatives, at 10 nM, a concentration lower than those requires to modulate the activity of nuclear receptors and/or steroidogenesis enzymes. Indeed, bioluminescence assays show that FSHR response is lowered up to 42.36 % in the presence of BPA, up to 32.79 % by chlorinated BPA derivatives and up to 27.04 % by brominated BPA derivatives, at non-cytotoxic concentrations and without modification of basal receptor activity. Moreover, molecular docking, molecular dynamics simulations, and site-directed mutagenesis experiments demonstrate that the halogenated BPA derivatives bind the FSHR transmembrane domain reducing the signal transduction efficiency which lowers the cellular cAMP production and in fine disrupts the physiological effect of FSH. The potential reproductive health risk of exposed individuals was estimated by comparing urinary concentrations (through a collection of human biomonitoring data) with the lowest effective concentrations derived from in vitro cell assays. Our results suggest a potentially high concern for the risk of inhibition of the FSHR pathway. This global approach based on FSHR activity could enable the rapid characterization of the toxicity of halogenated BPA derivatives (or other compounds) and assess the associated risk of exposure to these halogenated BPA derivatives.
Collapse
Affiliation(s)
- Valentine Suteau
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France
| | - Lorena Zuzic
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | - Paul Sibilia
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France
| | - Louis Gourdin
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France
| | - Claire Briet
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France
| | - Mickaël Thomas
- Poitiers University, Ecology & Biology of Interactions Laboratory, CNRS UMR 7285, INSERM CIC1402, IHES Research Group, Poitiers, France
| | - Eric Bourdeaud
- Poitiers University, Ecology & Biology of Interactions Laboratory, CNRS UMR 7285, INSERM CIC1402, IHES Research Group, Poitiers, France
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Pascal Carato
- Poitiers University, Ecology & Biology of Interactions Laboratory, CNRS UMR 7285, INSERM CIC1402, IHES Research Group, Poitiers, France
| | - Patrice Rodien
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France
| | - Mathilde Munier
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France.
| |
Collapse
|
3
|
Xu X, Zhang Y, Huang H, Chen J, Shi T. Distribution, transformation, and toxic effects of the flame retardant tetrabromobisphenol S and its derivatives in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174799. [PMID: 39019271 DOI: 10.1016/j.scitotenv.2024.174799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
As widely used alternative brominated flame retardants, tetrabromobisphenol S (TBBPS) and its derivatives have attracted increasing amounts of attention in the field of environmental science. Previous studies have shown that TBBPS and its derivatives easily accumulate in environmental media and may cause risks to environmental safety and human health. Therefore, to explore the environmental behaviours of TBBPS and its derivatives, in this paper, we summarized relevant research on the distribution of these compounds in water, the atmosphere, soil and food/biota, as well as their transformation mechanisms (biological and nonbiological) and toxic effects. The summary results show that TBBPS and its derivatives have been detected in water, the atmosphere, soil, and food/biota globally, making them a ubiquitous pollutant. These compounds may be subject to adsorption, photolysis or biological degradation after being released into the environment, which in turn increases their ecological risk. TBBPS and its derivatives can cause a series of toxic effects, such as neurotoxicity, hepatotoxicity, cytotoxicity, thyrotoxicity, genotoxicity and phytotoxicity, to cells or living organisms in in vitro and in vivo exposure. Toxicological studies suggest that TBBPS as an alternative to TBBPA is not entirely environmentally friendly. Finally, we propose future directions for research on TBBPS and its derivatives, including the application of new technologies in studies on the migration, transformation, toxicology and human exposure risk assessment of TBBPS and its derivatives in the environment. This review provides useful information for obtaining a better understanding of the behaviour and potential toxic effects of TBBPS and its derivatives in the environment.
Collapse
Affiliation(s)
- Xuehui Xu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China; Key Laboratory of Grassland Resources, Ministry of Education P.R. of China, Hohhot 010018, China.
| | - Yuexin Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jiafeng Chen
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| | - Tailong Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China
| |
Collapse
|
4
|
Wang X, Ye X, Chen Y, Lin J. Different effects of TCBPA exposure on liver cancer cells and liver cells: two sides of the coin. Am J Cancer Res 2024; 14:1363-1375. [PMID: 38590409 PMCID: PMC10998740 DOI: 10.62347/ysxw8940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Tetrachlorobisphenol A (TCBPA), widely used as a substitute for tetrabromobisphenol A (TBBPA), has been detected in various environmental media. Therefore, a detailed evaluation of the toxicological properties of TCBPA is necessary. In this study, we used hepatoma and normal liver cell models in vitro to investigate the effects of TCBPA. Our findings indicate that TCBPA promotes the proliferation of liver cancer cells, as evidenced by MTT and EdU assays, and enhances the expression levels of molecules related to hepatoma proliferation. Further investigation into the molecular mechanism revealed that TCBPA-induced hepatoma proliferation is regulated by an NLRP3-mediated inflammatory process. Additionally, TCBPA was found to promote the epithelial-mesenchymal transition (EMT) process in liver cancer cells. Conversely, TCBPA inhibited the proliferation of normal liver cells. Mechanistic studies showed that TCBPA induced cell pyroptosis in normal liver cells by evaluating a series of related markers, including NLRP3, IL-1β, ASC, GASDMD, and Caspase 1. In vivo models further showed that TCBPA causes liver tissue damage. In summary, this study demonstrates that TCBPA has a dual effect: promoting the occurrence and development of liver tumor cells in vitro, while inhibiting the proliferation of normal liver cells, like two sides of a coin. These opposite cellular outcomes are regulated by NLRP3-mediated inflammatory processes, providing valuable insights for evaluating the potential health impacts of TCBPA.
Collapse
Affiliation(s)
- Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China
| | - Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital351 Mingyue Street, Wucheng District, Jinhua 321001, Zhejiang, China
| | - Yanping Chen
- Department of Gastroenterology, Jinhua Municipal Central Hospital351 Mingyue Street, Wucheng District, Jinhua 321001, Zhejiang, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital351 Mingyue Street, Wucheng District, Jinhua 321001, Zhejiang, China
| |
Collapse
|
5
|
Dumitrescu A, Maxim C, Badea M, Rostas AM, Ciorîță A, Tirsoaga A, Olar R. Decavanadate-Bearing Guanidine Derivatives Developed as Antimicrobial and Antitumor Species. Int J Mol Sci 2023; 24:17137. [PMID: 38138964 PMCID: PMC10742724 DOI: 10.3390/ijms242417137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
To obtain biologically active species, a series of decavanadates (Hpbg)4[H2V10O28]·6H2O (1) (Htbg)4[H2V10O28]·6H2O; (2) (Hgnd)2(Hgnu)4[V10O28]; (3) (Hgnu)6[V10O28]·2H2O; and (4) (pbg = 1-phenyl biguanide, tbg = 1-(o-tolyl)biguanide, gnd = guanidine, and gnu = guanylurea) were synthesized and characterized by several spectroscopic techniques (IR, UV-Vis, and EPR) as well as by single crystal X-ray diffraction. Compound (1) crystallizes in space group P-1 while (3) and (4) adopt the same centrosymmetric space group P21/n. The unusual signal identified by EPR spectroscopy was assigned to a charge-transfer π(O)→d(V) process. Both stability in solution and reactivity towards reactive oxygen species (O2- and OH·) were screened through EPR signal modification. All compounds inhibited the development of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis bacterial strains in a planktonic state at a micromolar level, the most active being compound (3). However, the experiments conducted at a minimal inhibitory concentration (MIC) indicated that the compounds do not disrupt the biofilm produced by these bacterial strains. The cytotoxicity assayed against A375 human melanoma cells and BJ human fibroblasts by testing the viability, lactate dehydrogenase, and nitric oxide levels indicated compound (1) as the most active in tumor cells.
Collapse
Affiliation(s)
- Andreea Dumitrescu
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania; (A.D.); (C.M.); (M.B.)
| | - Catalin Maxim
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania; (A.D.); (C.M.); (M.B.)
| | - Mihaela Badea
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania; (A.D.); (C.M.); (M.B.)
| | - Arpad Mihai Rostas
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania;
| | - Alexandra Ciorîță
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400001 Cluj-Napoca, Romania
| | - Alina Tirsoaga
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania;
| | - Rodica Olar
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania; (A.D.); (C.M.); (M.B.)
| |
Collapse
|