1
|
Wang X, Xu Z, Song S, Mao Z, Huang X, Luo M, Zhou X, Xu B, Ye J, Song Y, Yu J. Which technique provides more benefits in return to sports and clinical outcomes after anterior cruciate ligament reconstruction: Double-bundle or single-bundle? A randomized controlled study. Chin Med J (Engl) 2024:00029330-990000000-01269. [PMID: 39385323 DOI: 10.1097/cm9.0000000000003267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The achievement of an optimal return to sport (RTS) has remained a key goal after sports-related injuries, with the ongoing debate on the effectiveness of different surgical approaches for anterior cruciate ligament (ACL) rupture. This study aims to assess clinical outcomes and RTS across various surgical methods, such as anatomical single-bundle reconstruction (ASBR), central-axial single-bundle reconstruction (CASBR), and double-bundle reconstruction (DBR). METHODS A randomized clinical trial was conducted, comprising 191 patients who underwent ACL rupture. These patients were divided into three groups based on the ACL reconstruction techniques they received (ASBR, CASBR, DBR). Over the 2-year follow-up period, the study assessed RTS through four single-hop tests, isokinetic extension tests, and limb asymmetry indices. Postoperative graft status was determined using the signal-to-noise quotient (SNQ), while knee function was evaluated using the International Knee Documentation Committee 2000 (IKDC-2000) score, Lysholm score, Tegner score, and degree of knee laxity. A binary logistic regression model was developed to forecast the factors influencing ideal RTS. RESULTS DBR (67.63%) and CASBR (58.00%) exhibited higher RTS passing rates compared to ASBR (30.39%; χ2 = 19.57, P <0.05). Quadriceps strength symmetry in the lower limbs was identified as the key determinant of RTS (χ2 = 17.08, P <0.05). The RTS rate was influenced by SNQs of the graft's tibial site (odds ratio: 0.544) and quadriceps strength of the reconstructed knee joint at 60°/s (odds ratio: 6.346). Notably, the DBR group showed enhanced knee stability, evidenced by superior results in the Lachman test (χ2 = 13.49, P <0.01), objective IKDC-2000 (χ2 = 27.02, P = 0.002), and anterior instability test (χ2 = 9.46, P <0.01). Furthermore, DBR demonstrated superior clinical outcomes based on the Lysholm score (DBR: 89.57 ± 7.72, CASBR: 83.00 ± 12.71, ASBR: 83.21 ± 11.95; F = 10.452, P <0.01) and IKDC-2000 score (DBR: 90.95 ± 7.00, CASBR: 84.64 ± 12.68, ASBR: 83.63 ± 11.41; F = 11.78, P <0.01). CONCLUSION For patients with ACL rupture, more ideal RTS rate and clinical outcomes were shown in the DBR group than in the ASBR and CASBR groups. Autograft status and quadriceps strength are postively related to RTS. TRIAL REGISTRATION ClinicalTrials.gov (NCT05400460).
Collapse
Affiliation(s)
- Xinjie Wang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Zijie Xu
- Institute of Sports Medicine, Peking University, Beijing 100191, China
| | - Shitang Song
- Peking University Health Science Center, Beijing 100191, China
| | - Zimu Mao
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
- Institute of Sports Medicine, Peking University, Beijing 100191, China
| | - Ximeng Huang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
- Institute of Sports Medicine, Peking University, Beijing 100191, China
| | - Michael Luo
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
- Institute of Sports Medicine, Peking University, Beijing 100191, China
| | - Xiao Zhou
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
- Institute of Sports Medicine, Peking University, Beijing 100191, China
| | - Bingbing Xu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
- Institute of Sports Medicine, Peking University, Beijing 100191, China
| | - Jing Ye
- Orthopaedic Sports Medicine Center, Beijing Tsinghua Changgung Hospital, Affiliated Hospital of Tsinghua University, Beijing 102218, China
| | - Yifan Song
- Orthopaedic Sports Medicine Center, Beijing Tsinghua Changgung Hospital, Affiliated Hospital of Tsinghua University, Beijing 102218, China
| | - Jiakuo Yu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
- Institute of Sports Medicine, Peking University, Beijing 100191, China
- Orthopaedic Sports Medicine Center, Beijing Tsinghua Changgung Hospital, Affiliated Hospital of Tsinghua University, Beijing 102218, China
| |
Collapse
|
2
|
Jia C, Zhang R, Wang J, Zhang B, Zhang H, Kang L, Zhou L, Shen C. Biomechanical Study of 3 Osteoconductive Materials Applied in Pedicle Augmentation and Revision for Osteoporotic Vertebrae: Allograft Bone Particles, Calcium Phosphate Cement, Demineralized Bone Matrix. Neurospine 2023; 20:1407-1420. [PMID: 38171307 PMCID: PMC10762407 DOI: 10.14245/ns.2346760.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE This study assessed biomechanical properties of pedicle screws enhanced or revised with 3 materials. We aimed to compare the efficacy of these materials in pedicle augmentation and revision. METHODS One hundred twenty human cadaveric vertebrae were utilized for in vitro testing. Vertebrae bone density was evaluated. Allograft bone particles (ABP), calcium phosphate cement (CPC), and demineralized bone matrix (DBM) were used to augment or revise pedicle screw. Post the implantation of pedicle screws, parameters such as insertional torque, pullout strength, cycles to failure and failure load were measured using specialized instruments. RESULTS ABP, CPC, and DBM significantly enhanced biomechanical properties of the screws. CPC augmentation showed superior properties compared to ABP or DBM. ABP-augmented screws had higher cycles to failure and failure loads than DBM-augmented screws, with no difference in pullout strength. CPC-revised screws exhibited similar strength to the original screws, while ABP-revised screws showed comparable cycles to failure and failure loads but lower pullout strength. DBM-revised screws did not match the original screws' strength. CONCLUSION ABP, CPC, and DBM effectively improve pedicle screw stability for pedicle augmentation. CPC demonstrated the highest efficacy, followed by ABP, while DBM was less effective. For pedicle revision, CPC is recommended as the primary choice, with ABP as an alternative. However, using DBM for pedicle revision is not recommended.
Collapse
Affiliation(s)
- Chongyu Jia
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renjie Zhang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiaqi Wang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Zhang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huaqing Zhang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang Kang
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Luping Zhou
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|