1
|
Gering E, Johnsson M, Theunissen D, Martin Cerezo ML, Steep A, Getty T, Henriksen R, Wright D. Signals of selection and ancestry in independently feral Gallus gallus populations. Mol Ecol 2024; 33:e17336. [PMID: 38553993 DOI: 10.1111/mec.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 10/18/2024]
Abstract
Recent work indicates that feralisation is not a simple reversal of domestication, and therefore raises questions about the predictability of evolution across replicated feral populations. In the present study we compare genes and traits of two independently established feral populations of chickens (Gallus gallus) that inhabit archipelagos within the Pacific and Atlantic regions to test for evolutionary parallelism and/or divergence. We find that feral populations from each region are genetically closer to one another than other domestic breeds, despite their geographical isolation and divergent colonisation histories. Next, we used genome scans to identify genomic regions selected during feralisation (selective sweeps) in two independently feral populations from Bermuda and Hawaii. Three selective sweep regions (each identified by multiple detection methods) were shared between feral populations, and this overlap is inconsistent with a null model in which selection targets are randomly distributed throughout the genome. In the case of the Bermudian population, many of the genes present within the selective sweeps were either not annotated or of unknown function. Of the nine genes that were identifiable, five were related to behaviour, with the remaining genes involved in bone metabolism, eye development and the immune system. Our findings suggest that a subset of feralisation loci (i.e. genomic targets of recent selection in feral populations) are shared across independently established populations, raising the possibility that feralisation involves some degree of parallelism or convergence and the potential for a shared feralisation 'syndrome'.
Collapse
Affiliation(s)
- E Gering
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - M Johnsson
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - D Theunissen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - M L Martin Cerezo
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - A Steep
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - T Getty
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - R Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - D Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Yang Y, Chen YK, Xie MZ. Exploring the transformative impact of traditional Chinese medicine on depression: Insights from animal models. World J Psychiatry 2024; 14:607-623. [PMID: 38808079 PMCID: PMC11129158 DOI: 10.5498/wjp.v14.i5.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
Depression, a prevalent and complex mental health condition, presents a significant global health burden. Depression is one of the most frequent mental disorders; deaths from it account for 14.3% of people worldwide. In recent years, the integration of complementary and alternative medicine, including traditional Chinese medicine (TCM), has gained attention as a potential avenue for addressing depression. This comprehensive review critically assesses the efficacy of TCM interventions in alleviating depressive symptoms. An in-depth look at different research studies, clinical trials, and meta-analyses is used in this review to look into how TCM practices like herbal formulations, acupuncture, and mind-body practices work. The review looks at the quality of the evidence, the rigor of the methods, and any possible flaws in the current studies. This gives us an idea of where TCM stands right now in terms of treating depression. This comprehensive review aims to assess the efficacy of TCM interventions in alleviating depressive symptoms. In order to learn more about their possible healing effects, the study also looks into how different types of TCM work, such as herbal formulas, acupuncture, and mind-body practices.
Collapse
Affiliation(s)
- Yan Yang
- School of Nursing, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Yan-Kun Chen
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, Guangdong Province, China
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Meng-Zhou Xie
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| |
Collapse
|
3
|
Luan X, Xing H, Guo F, Liu W, Jiao Y, Liu Z, Wang X, Gao S. The role of ncRNAs in depression. Heliyon 2024; 10:e27307. [PMID: 38496863 PMCID: PMC10944209 DOI: 10.1016/j.heliyon.2024.e27307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Depressive disorders have a significant impact on public health, and depression have an unsatisfactory recurrence rate and are challenging to treat. Non-coding RNAs (ncRNAs) are RNAs that do not code protein, which have been shown to be crucial for transcriptional regulation. NcRNAs are important to the onset, progress and treatment of depression because they regulate various physiological functions. This makes them distinctively useful as biomarkers for diagnosing and tracking responses to therapy among individuals with depression. It is important to seek out and summarize the research findings on the impact of ncRNAs on depression since significant advancements have been made in this area recently. Hence, we methodically outlined the findings of published researches on ncRNAs and depression, focusing on microRNAs. Above all, this review aims to improve our understanding of ncRNAs and provide new insights of the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Xinchi Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Han Xing
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Weiyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yang Jiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhenyu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xuezhe Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|