1
|
Yu J. Chemical Composition of Essential Oils and Their Potential Applications in Postharvest Storage of Cereal Grains. Molecules 2025; 30:683. [PMID: 39942787 PMCID: PMC11820458 DOI: 10.3390/molecules30030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Insect infestation and microbial, particularly mold contamination, are the major causes of stored grain deterioration during postharvest storage, which results in a significant loss in grain quality and quantity, and the formation of toxic chemicals such as mycotoxins. Pesticides, together with physical protection strategies, have been widely used to control insects and molds in stored grains, but their uses present significant environmental and health problems. This has led to the exploration of safer pesticide alternatives. Essential oils (EOs) are highly concentrated materials extracted from leaves, stems, flowers, seeds, roots, fruit rinds, resins, or barks. They are multifunctional due to their complex chemical composition. Thus, EOs are frequently used for their therapeutic, antimicrobial, odoriferous, and flavor properties in a wide range of products like medicine, cosmetics, and foods. This review provides comprehensive information on the chemical compositions of EOs commonly used in the food industry, factors influencing EO composition, and recent studies on the potential of EOs as alternatives to synthetic pesticides and fungicides for stored grain protection. The relationship between chemical compositions of EOs and their anti-insects and antimicrobial potentials, as well as current approaches/technologies of using EOs for food preservation, are also covered. However, this review also highlights the need for research on the development of feasible and affordable methodologies to apply effective EOs or encapsulated EOs in grain storage settings, particularly for organic grain protection.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Science, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
2
|
Jin S, Li M, Liu Z, Liu R, Li Y, Zhu Y, Yuan Y, Li P, Li P, Chen C, Sun Y. Study on the correlation between color and taste of beauty tea infusion and the pivotal contributing compounds based on UV-visible spectroscopy, taste equivalent quantification and metabolite analysis. Food Chem X 2024; 21:101192. [PMID: 38389575 PMCID: PMC10881530 DOI: 10.1016/j.fochx.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
This study utilized a colorimeter to determine the color values of 23 beauty tea (BT) samples, the color and the taste characteristics were also quantitatively described through ultraviolet-visible (UV-Vis) spectroscopy and taste equivalent quantification. Furthermore, metabolomic analysis was conducted by using ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS). Correlation analysis was employed to preliminarily identify the compounds that contribute to the color and taste of BT infusion. Finally, the contributing compounds were further determined through verification experiment. The results showed that within a certain range, as the color of BT infusion deepened, the taste became stronger, more bitter and astringent, while on the contrary, it became sweeter and mellower. Theaflavins, kaempferol, astragalin, and 5-p-coumaroylquinic acid influenced both the color and taste of the BT infusion. Gallic acid was also determined as a contributor to the color. This study provides new insights into research on tea quality in infusion color and taste aspects.
Collapse
Affiliation(s)
- Shan Jin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjin Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziqiong Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruihua Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanchao Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyu Zhu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuwei Yuan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengchun Li
- Fujian Jiangshan Beauty Tea Co., Ltd., Sanming 366100, China
| | - Pengming Li
- Fujian Jiangshan Beauty Tea Co., Ltd., Sanming 366100, China
| | - Chunmei Chen
- Fujian Fengyuan Tea Industry Co., Ltd., Sanming 366100, China
| | - Yun Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Jia X, Zhang Q, Chen M, Wang Y, Lin S, Pan Y, Cheng P, Li M, Zhang Y, Ye J, Wang H. Analysis of the effect of different withering methods on tea quality based on transcriptomics and metabolomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1235687. [PMID: 37780509 PMCID: PMC10538532 DOI: 10.3389/fpls.2023.1235687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023]
Abstract
Withering is very important to the quality of Wuyi rock tea. In this study, transcriptomics and metabolomics were used to analyze the effects of different withering methods on tea quality formation. The results showed that sunlight withering (SW) was most beneficial in increasing the gene expression of ubiquinone and other terpenoid-quinone biosynthesis (ko00130), pyruvate metabolism (ko00620), starch and sucrose metabolism (ko00500), and tryptophan metabolism (ko00380) pathways, and increasing the content of nucleotides and derivatives, terpenoids, organic acids and lipids, thus enhancing the mellowness, fresh and brisk taste and aroma of tea. Withering trough withering (WW) was most beneficial in increasing the gene expression of glutathione metabolism (ko00480), phenylpropanoid biosynthesis (ko00940) pathways, increasing the content of phenolic acids and flavonoids, thus enhancing tea bitterness. A comprehensive evaluation of the metabolite content and taste characteristics of tea leaves showed SW to be the best quality and charcoal fire withering (FW) to be the worst quality. This study provided an important basis for guiding the processing of Wuyi rock tea with different flavors.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Yibin Pan
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|