1
|
Yu JM, Zhai L, Zheng B, Li H, Hou C, Han Y, Ma J, Wang Z, Xiong WW. Construction of hierarchical nanostructured surface on an organic hybrid selenidostannate with light trapping effect to achieve sunlight-driven environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137881. [PMID: 40073574 DOI: 10.1016/j.jhazmat.2025.137881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Due to the low intensity of sunlight, it is a great challenge to realize highly efficient sunlight-driven photocatalysis. To maximize the utilization of sunlight, increasing the light capturing ability of photocatalysts is a prerequisite to attain high catalytic performances. Due to the multiple reflections of light in the hierarchical nanostructures, constructing hierarchical nanostructured surface should boost the sunlight capturing ability of a photocatalyst. Herein we used a surface oxidation etching method to construct a hierarchical nanostructure on the surface of an organic hybrid selenidostannate [Bmim]4[Sn9Se20], namely BTSe. After 24 hours of etching by ammonium persulfate, the surface of BTSe-O24 turned into a hierarchical nanostructure. FDTD simulation proved that the hierarchical nanostructure can effectively decline the loss of incident light and enhance light capturing ability of BTSe-O24. As a result, BTSe-O24 can completely reduce Cr(VI) (100 mg/L) in 8 min with a conversion rate of 750 mg/(g h) under sunlight. The catalytic performance of BTSe-O24 under sunlight is even better than those of most reported photocatalysts under high-power xenon lamps. More importantly, BTSe-O24 can maintain high photocatalytic efficiency in the whole daytime (from 8:00 to 16:00 in autumn and winter). Our research opens a new perspective on the design of sunlight-driven photocatalysts.
Collapse
Affiliation(s)
- Ji-Ming Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Longfei Zhai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Haohao Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Chunhui Hou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yimin Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Juan Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Zihui Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Wei-Wei Xiong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China.
| |
Collapse
|
2
|
Devi B, Goswami M, Devi A. Entrapment behaviours of trivalent and hexavalent chromium from aqueous medium using edible alkali-derived activated carbon of Eichhornia crassipes (water hyacinth). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6025-6039. [PMID: 38135795 DOI: 10.1007/s11356-023-31545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
The study examines the adsorption capabilities of an environmentally friendly activated carbon derived from a novel activating agent, i.e., an edible alkali prepared from black gram plant ash, for the removal of Cr(III) and Cr(VI) ions from an aqueous environment. The results of the systematic research show impressive removal efficiencies of 95.12% for Cr(III) ions and 99.6% for Cr(VI) ions. The kinetics and equilibrium data of the adsorption process confirm to the pseudo-second-order kinetics and Freundlich isotherm model. The thermodynamic analysis reveals the adsorption process as feasible and spontaneous across the temperature range of 298-313 K. The mechanism entails electrostatic attraction and adsorption of Cr(III) and Cr(VI) ions on oppositely charged surfaces and the participation of oxygen-containing functional groups on WHAC-BGA surface in the reduction of Cr(VI) to Cr(III). This study provides valuable insights for optimizing strategies to combat chromium contamination in water sources, offering a sustainable solution with the potential for real-world application.
Collapse
Affiliation(s)
- Bhaswati Devi
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India
- Department of Chemistry, Gauhati University, Guwahati, 781014, Assam, India
| | - Manisha Goswami
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India
- Department of Environmental Science, Gauhati University, Guwahati, 781014, Assam, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
3
|
Pal CA, Choi JS, Angaru GKR, Lingamdinne LP, Choi YL, Koduru JR, Yang JK, Chang YY. Efficiency of Ppy-PA-pani and Ppy-PA composite adsorbents in Chromium(VI) removal from aqueous solution. CHEMOSPHERE 2023; 337:139323. [PMID: 37392794 DOI: 10.1016/j.chemosphere.2023.139323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
In this study, first time the combination of composites with Phytic acid (PA) as the organic binder cross-linker is reported. The novel use of PA with single and double conducting polymers (polypyrrole (Ppy) and polyaniline (Pani)) were tested against removal of Cr(VI) from wastewater. Characterizations (FE-SEM, EDX, FTIR, XRD, XPS) were performed to study the morphology and removal mechanism. The adsorption removal capability of Polypyrrole - Phytic Acid - Polyaniline (Ppy-PA-Pani) was deemed to be higher than Polypyrrole - Phytic Acid (Ppy-PA) due to the mere existence of Polyaniline as the extra polymer. The kinetics followed 2nd order with equilibration at 480 min, but Elovich model confirmed that chemisorption is followed. Langmuir isotherm model exhibited maximum adsorption capacity of 222.7-321.49 mg/g for Ppy-PA-Pani and 207.66-271.96 mg/g for Ppy-PA at 298K-318K with R2 values of 0.9934 and 0.9938 respectively. The adsorbents were reusable for 5 cycles of adsorption-desorption. The thermodynamic parameter, ΔH shows positive values confirmed the adsorption process was endothermic. From overall results, the removal mechanism is believed to be chemisorption through Cr(VI) reduction to Cr(III). The use of phytic acid (PA) as organic binder with combination of dual conducting polymer (Ppy-PA-Pani) was invigorating the adsorption efficiency than just single conducting polymer (Ppy-PA).
Collapse
Affiliation(s)
| | - Jong-Soo Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | | | - Yu-Lim Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|