1
|
Domínguez-Valencia R, Bermúdez R, Pateiro M, Purriños L, Benedito J, Lorenzo JM. Impact of Supercritical CO 2 Treatment on Lupin Flour and Lupin Protein Isolates. Foods 2025; 14:675. [PMID: 40002118 PMCID: PMC11854785 DOI: 10.3390/foods14040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Global population growth is putting pressure on the food supply, necessitating the exploration of new, alternative, and sustainable protein sources. Lupin, an underutilized legume in human nutrition, has the potential to play a significant role in addressing this challenge. However, its incorporation into the human diet requires thorough investigation, including exploring and optimizing functionalization processes to maximize its potential. This study aimed to optimize the parameters (pressure, time, and CO2 flow) for extracting anti-technological factors (ATFs) from lupin using supercritical CO2 (SC-CO2) and to evaluate the effects of this extraction on both the flour and the protein isolate derived from it. Optimization revealed that the optimal SC-CO2 conditions were a CO2 flow rate of 4 kg/h at 400 bar for 93 min. Under these conditions, significant changes were observed in the flour composition, including a reduction in oil, polyphenols, and moisture content, along with an increase in ash content. Improved color parameters were also noted. These variations were attributed to the removal of oil and phenolic compounds during processing. Furthermore, this research demonstrated that SC-CO2 treatment improved lupin protein isolate (LPI) purity (93.81 ± 0.31% vs. 87.42 ± 0.48%), significantly reduced oil content (8.31 ± 0.09% vs. 14.31 ± 0.32%), and enhanced color parameters. The SC-CO2 procedure also resulted in a higher protein extraction yield (56.95 ± 0.45% vs. 53.29 ± 2.37%). However, the total extraction yield (g LPI/100 g of flour) was not affected by SC-CO2 treatment, remaining at 24.30 ± 0.97% for the control sample and 24.21 ± 0.26% for the treated sample. The extracted oil (2.71 ± 0.11 g/100 g of flour), a co-product of the SC-CO2 step, exhibited a fatty acid profile characterized by high levels of unsaturated fatty acids (62.8 ± 0.74 g/100 g oil), oleic acid (27.76 ± 0.77 g/100 g oil), linoleic acid (25.98 ± 0.73 g/100 g oil), and α-linolenic acid (5.32 ± 0.16 g/100 g oil), as well as a balanced ratio of essential fatty acids (n-6/n-3 = 4.89). The treatment had minimal to no effect on amino acid content or chemical score, and the protein was characterized by high amounts of essential amino acids (334 ± 3.12 and 328 ± 1.05 mg/g protein in LPI-control and LPI-SF, respectively). These findings demonstrate that both the LPI and the oil extracted using SC-CO2 possess high nutritional quality and are suitable for human food applications.
Collapse
Affiliation(s)
- Rubén Domínguez-Valencia
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia N° 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (R.B.); (M.P.); (L.P.); (J.M.L.)
| | - Roberto Bermúdez
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia N° 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (R.B.); (M.P.); (L.P.); (J.M.L.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia N° 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (R.B.); (M.P.); (L.P.); (J.M.L.)
| | - Laura Purriños
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia N° 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (R.B.); (M.P.); (L.P.); (J.M.L.)
| | - Jose Benedito
- Grupo ASPA (Anàlisi I Simulació de Processos Agroalimentaris), Instituto de Ingeniería de Alimentos, Food-UPV, Universitat Politècnica de València, Camí de Vera s/n, E46022 Valencia, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia N° 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (R.B.); (M.P.); (L.P.); (J.M.L.)
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
2
|
Kanlayavattanakul M, Mersni D, Lourith N. Plant-derived saponins and their prospective for cosmetic and personal care products. BOTANICAL STUDIES 2024; 65:32. [PMID: 39514141 PMCID: PMC11549071 DOI: 10.1186/s40529-024-00438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Plants are industrially cultivated and processed serving for specified sectors for human consumptions including cosmetic and personal care products. Where, the consumers' awareness towards sustainability are increasing year by year. Among which, those of the materials derived from the plants produced with good agricultural and manufacturing practices abided with bio-circular-green economy theme, are of eminence. This perspective is in line with the researchers' bioprospective onto natural products. Special attention sheds on saponins, the biosurfactants that will not cause detrimental effects on the environment. Which, plants are regarded as the sustainable sources of these cosmetic substances. However, among tremendous plants that have been continuously explored upon their potential applications. Most of the studies focus on preparation of the saponins and biological activities. Surprisingly, those that are abided with the list published in the European Commission (CosIng) that are of crucially for cosmetic regulation are insufficiently demonstrated, which burden their applications in the sector. This context summarizes the industrial crops that are registered as plant saponin in the CosIng database. Those that are insufficiently exploited on the information required for cosmetic formulations are therefore encouraged to be examined. In addition, multidirectional cosmetic beneficials of the filled plants saponin would be encouraged to be explored. These plants will be properly knowledge managed for their sustainable utilizations as the bio-based materials promising for cosmetic and personal care industrial perspectives.
Collapse
Affiliation(s)
- Mayuree Kanlayavattanakul
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Donia Mersni
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Rue de la Geraudiere, CS 82225, Nantes, 44322, France
| | - Nattaya Lourith
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| |
Collapse
|
3
|
Chen W, Yan A, Sun T, Wang X, Sun W, Pan B. Self-nanomicellizing solid dispersion: A promising platform for oral drug delivery. Colloids Surf B Biointerfaces 2024; 241:114057. [PMID: 38924852 DOI: 10.1016/j.colsurfb.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Amorphous solid dispersion (ASD) has been widely used to enhance the oral bioavailability of water-insoluble drugs for oral delivery because of its advantages of enhancing solubility and dissolution rate. However, the problems related to drug recrystallization after drug dissolution in media or body fluid have constrained its application. Recently, a self-nanomicellizing solid dispersion (SNMSD) has been developed by incorporating self-micellizing polymers as carriers to settle the problems, markedly improving the ability of supersaturation maintenance and enhancing the oral bioavailability of drug. Spontaneous formation and stability of the self-nanomicelle (SNM) have been proved to be the key to supersaturation maintenance of SNMSD system. This offers a novel research direction for maintaining supersaturation and enhancing the bioavailability of ASDs. To delve into the advantages of SNMSDs, we provide a concise review introducing the formation mechanism, characterization methods and stability of SNMs, emphasizing the advantages of SNMSDs for oral drug delivery facilitated by SNM formation, and discussing relevant research prospects.
Collapse
Affiliation(s)
- Weitao Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - An Yan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Tiancong Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
4
|
Yadav SN, Rai S, Bhattarai A, Sinha B. Interaction between methyl red and cetyltrimethylammonium bromide under the influence of sodium polystyrene sulphonate in ethanol-water binary solvent systems: A spectrophotometric investigation. Heliyon 2024; 10:e33014. [PMID: 39677835 PMCID: PMC11639742 DOI: 10.1016/j.heliyon.2024.e33014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 12/17/2024] Open
Abstract
This research aims to comprehensively investigate and analyze the UV-visible spectroscopic behavior of the methyl red (MR)-cetyltrimethylammonium bromide (CTAB) system under the influence of sodium polystyrene sulfonate (NaPSS) in aqueous and different volume fractions (v.f.) of ethanol (EtOH)-H2O (0.1, 0.2, and 0.3) at 298.15 ± 0.2 K. In EtOH-H2O solvent systems, the triple interactions of dyes-surfactants-polyelectrolyte (DSP) complex systems are entirely novel. MR interacts with CTAB in NaPSS in the binary solvent media (0.1, 0.2, and 0.3 v.f. of EtOH-H2O) resulting in the formation of ion-pairs at very low CTAB concentrations, far below their apparent critical micelle concentration (CMC*) reducing the absorbance, and the new complexes above the CMC* due to solubilization of the MR into CTAB micelles observed by distinct spectral shifts. The CMC* values obtained from spectroscopic data increase in the order: (CMC*)water < (CMC*)0.1 < (CMC*)0.2 < (CMC*)0.3. This is because of the reduced polarity or dielectric constant and increased degree of water structure disruption around the hydrophobic chains of CTAB, where micelle formation occurs at somewhat higher concentrations. The Gibbs energy of micellization (Δ G m o ) increases in the order: ( Δ G m o = - 16.89 )water < ( Δ G m o = - 16.17 )0.1 < ( Δ G m o = - 15.62 )0.2 < ( Δ G m o = - 15.38 )0.3, which further supports the inhibitory effect of increasing ethanol content towards micellization. In the post-micellar region, the decrease in hydrophobic interactions and an increase in electrostatic interactions lead to a rise in the overall binding constant value. This means that, when NaPSS is present, the stronger electrostatic interactions in the post-micellar region contribute significantly to the increased binding of CTAB micelles with MR. The tautomeric activity of MR and the solvent composition played a prime role in affecting the interaction mechanism, as evidenced by the blue and red spectral shifts.
Collapse
Affiliation(s)
- Shiv Narayan Yadav
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, 56613, Nepal
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Summi Rai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, 56613, Nepal
- National Archives, Ministry of Culture, Tourism and Civil Aviation, Government of Nepal, Kathmandu, 44600, Nepal
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, 56613, Nepal
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| |
Collapse
|
5
|
Zhuniskenov Y, Sabirova A, Serikov G, Abbas AH, Pourafshary P. Impact of the Naturally Driven Surfactant in EOR Application: Experimental, Microscopic, and Numerical Analyses. ACS OMEGA 2024; 9:1327-1340. [PMID: 38222572 PMCID: PMC10785280 DOI: 10.1021/acsomega.3c07519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
While synthetic, conventional surfactants have a known negative environmental impact, their high cost poses a significant challenge. In contrast, naturally extracted surfactants are cheaper and are readily available. The applicability of natural surfactants depends on the saponin concentration, extraction, and synthesis methods. Certain parameters, such as their efficiency in obtaining the required interfacial tension (IFT) values, salinity tolerance, and stability under reservoir conditions, must be examined. Kazakhstan produces a substantial quantity of flaxseed, and flaxseed oil is a good source of fatty acids that can be converted to natural surfactants. Therefore, the work aims to identify the potential of the natural-flaxseed oil surfactant. The experimental study evaluated the synthesized surfactant, effective concentration, salinity's effect, interfacial tension, rheology, and oil recovery concerns in vugs limestone. A microscopic study was conducted to provide insight into the flow in the vugus matrix. At the same time, the numerical method was also employed to establish a potential recovery understanding. The Fourier spectrometer results proved the distinct presence of the triterpenoid. The critical micelle concentrations are 6 and 2.5 wt % for solution in 0 and seawater salinity, respectively. The IFT was reduced by 40-48% and is more effective in seawater solutions. The oil additional recovery was 39-50% after surfactants. The presence of a fractured vugus did not affect the success of the application. Despite the difficulty in modeling the system, the numerical results agree with the experiments and show only 7% differences in total recovery. The research offers novel natural surfactants that can be applied in offshore Kazakhstan.
Collapse
Affiliation(s)
- Yermukhan Zhuniskenov
- Department of Petroleum Engineering,
School of Mining and Geosciences, Nazarbayev
University, Astana 010000, Kazakhstan
| | - Aruzhan Sabirova
- Department of Petroleum Engineering,
School of Mining and Geosciences, Nazarbayev
University, Astana 010000, Kazakhstan
| | - Galymzhan Serikov
- Department of Petroleum Engineering,
School of Mining and Geosciences, Nazarbayev
University, Astana 010000, Kazakhstan
| | - Azza Hashim Abbas
- Department of Petroleum Engineering,
School of Mining and Geosciences, Nazarbayev
University, Astana 010000, Kazakhstan
| | - Peyman Pourafshary
- Department of Petroleum Engineering,
School of Mining and Geosciences, Nazarbayev
University, Astana 010000, Kazakhstan
| |
Collapse
|