1
|
Han M, Yin J, Wang X, Yang R, Dong Z, Ning J, Xu Y, Shao B. Pentachlorophenol increases diabetes risk by damaging β-cell secretion and disrupting gut microbial-related amino acids and fatty acids biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136103. [PMID: 39405696 DOI: 10.1016/j.jhazmat.2024.136103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Pentachlorophenol (PCP), a ubiquitous environmental pollutant, has been reported as a possible contributor to diabetes. However, evidence for general population is scarce while related mechanisms are largely unknown. Using a representative population-based case-control study in Beijing (n = 1796), we found a positive association between PCP exposure and diabetes risk with the odds ratio reaching 1.68 (95 % confidence interval: 1.30 to 2.18). A further rat experiment revealed that low-dose PCP mimicking real-world human exposure can significantly impair glycemic homeostasis by inducing pancreatic β-cell dysfunction, with non-linear dose-response relationships. Subsequent multi-omics analysis suggested that low-dose PCP led to notable gut microbiota dysbiosis (especially the species from genus Prevotella, such as intermedia, dentalis, ruminicola, denticola, melaninogenica, and oris), decreased serum amino acids (L-phenylalanine, L-tyrosine, and L-tryptophan) and increased serum fatty acids (oleic and palmitic acid) in rats, while strong correlations were observed among alterations of gut microbes, serum metabolites and glycemic-related biomarkers (e.g., fasting blood glucose and insulin). Collectively, these results imply PCP may increase diabetes risk by disrupting gut microbial-related amino acids and fatty acids biosynthesis. This will help guide future in-depth studies on the roles of PCP in the development of human diabetes.
Collapse
Affiliation(s)
- Muke Han
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China; Peking Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Beijing 100083, PR China
| | - Jie Yin
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Xinyi Wang
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Runhui Yang
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Zhong Dong
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Junyu Ning
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Yajun Xu
- Peking Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Beijing 100083, PR China; Peking Univ, Beijing Key Lab Toxicol Res & Risk Assessment Food, Beijing 100083, PR China
| | - Bing Shao
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China; Xihua Univ, Sch Food & Bioengn, Food Microbiol Key Lab Sichuan Prov, Chengdu 610039, PR China.
| |
Collapse
|
2
|
Bouchnak R, El Ayari T, Rabeh I, Salhi O, Aloui F, Maamouri A, Gravato C, Trabelsi M, Mhadhbi L. Polyethylene microplastic modulates the toxicity of pentachlorophenol to the microalgae Isochrysis galbana, clone t-ISO. CHEMOSPHERE 2024; 367:143588. [PMID: 39461439 DOI: 10.1016/j.chemosphere.2024.143588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Pentachlorophenol (PCP) and polyethylene microplastic (PE-MP) have been designated as emerging and persistent pollutants, respectively. The combined effects of those pollutants are still unknown, especially to organisms like phytoplankton that may adsorb to their surface. Therefore, the purpose of this study was to investigate for the first time the effects of PE-MP alone and in combination with PCP on the microalgae Isochrysis galbana, clone t-ISO following 72 h of exposure. Photosynthetic pigments amounts, carotenoid, protein, carbohydrate and fatty acids have been assessed. Acute toxicity test showed that the 72 h median inhibition concentration (72 h-EC50) was 148.2, 0.66 and 087 mg L-1 for PE-MP, PCP and their mixture. The utmost effects in growth inhibition rates were noted with 0.5 and 1.25 mg L-1 PCP (23% and 85%, respectively), and 100 and 300 mg L-1 PE-MP (49% and 64%, respectively). Moreover, it was found that those concentrations had a major impact on the photosynthetic pigments, protein, carbohydrate, and fatty acids amounts in algal cells. Furthermore, levels of H2O2 and Malondialdehyde (MDA), as well as the activities of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), indicated the induction of an oxidative stress in algal cells. It appears that adding PE-MP at a no-effect concentration (25 mg L-1) reduces the toxicity caused by PCP due to its adsorption to polyethylene microplastics.
Collapse
Affiliation(s)
- Rahma Bouchnak
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Tahani El Ayari
- Group of Fundamental and Applied Malacology (MAF), Laboratory of Environment Bio-Monitoring (LBE), Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Bizerte, Tunisia.
| | - Imen Rabeh
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Oumaima Salhi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia; IRDL UMR CNRS 6027, Université Bretagne Sud, 56000 Vannes, France.
| | - Foued Aloui
- Laboratoire des Ressources Sylvo-Pastorales, Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tunisia.
| | - Ahmed Maamouri
- Interprofessional Grouping of Fishery Products, Fish Hatchery of Tabarka, Tunisia.
| | - Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Monia Trabelsi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Lazhar Mhadhbi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| |
Collapse
|
3
|
Rivenbark KJ, Nikkhah H, Wang M, Beykal B, Phillips TD. Toxicity of representative organophosphate, organochlorine, phenylurea, dinitroaniline, carbamate, and viologen pesticides to the growth and survival of H. vulgaris, L. minor, and C. elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21781-21796. [PMID: 38396181 PMCID: PMC11257079 DOI: 10.1007/s11356-024-32444-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Pesticides are commonly found in the environment and pose a risk to target and non-target species; therefore, employing a set of bioassays to rapidly assess the toxicity of these chemicals to diverse species is crucial. The toxicity of nine individual pesticides from organophosphate, organochlorine, phenylurea, dinitroaniline, carbamate, and viologen chemical classes and a mixture of all the compounds were tested in three bioassays (Hydra vulgaris, Lemna minor, and Caenorhabditis elegans) that represent plant, aquatic, and soil-dwelling species, respectively. Multiple endpoints related to growth and survival were measured for each model, and EC10 and EC50 values were derived for each endpoint to identify sensitivity patterns according to chemical classes and target organisms. L. minor had the lowest EC10 and EC50 values for seven and five of the individual pesticides, respectively. L. minor was also one to two orders of magnitude more sensitive to the mixture compared to H. vulgaris and C. elegans, where EC50 values were calculated to be 0.00042, 0.0014, and 0.038 mM, respectively. H. vulgaris was the most sensitive species to the remaining individual pesticides, and C. elegans consistently ranked the least sensitive to all tested compounds. When comparing the EC50 values across all pesticides, the endpoints of L. minor were correlated with each other while the endpoints measured in H. vulgaris and C. elegans were clustered together. While there was no apparent relationship between the chemical class of pesticide and toxicity, the compounds were more closely clustered based on target organisms (herbicide vs insecticide). The results of this study demonstrate that the combination of these plant, soil, and aquatic specie can serve as representative indicators of pesticide pollution in environmental samples.
Collapse
Affiliation(s)
- Kelly J Rivenbark
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Hasan Nikkhah
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, USA
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Burcu Beykal
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, USA
| | - Timothy D Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA.
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|