1
|
da Rocha MN, de Sousa DS, da Silva Mendes FR, Dos Santos HS, Marinho GS, Marinho MM, Marinho ES. Ligand and structure-based virtual screening approaches in drug discovery: minireview. Mol Divers 2025; 29:2799-2809. [PMID: 39223358 DOI: 10.1007/s11030-024-10979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The compilation of ligand and structure-based molecular modeling methods has become an important practice in virtual screening applied to drug discovery. This systematic review addresses and ranks various virtual screening strategies to drive the selection of the optimal method for studies that have as their starting point a multi-ligand investigation and investigation based on the protein structure of a therapeutic target. This study shows examples of applications and an evaluation based on the objective and problematic of a series of virtual screening studies present in the ScienceDirect® database. The results showed that the molecular docking technique is widely used in scientific production, indicating that approaches that use protein structure as a starting point are the most promising strategy for drug discovery that relies on virtual screening-based research.
Collapse
Affiliation(s)
- Matheus Nunes da Rocha
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil.
| | - Damião Sampaio de Sousa
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
| | | | - Helcio Silva Dos Santos
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
- Chemistry Department, State University of Acaraú Valley, Sobral, CE, Brazil
| | - Gabrielle Silva Marinho
- Faculdade de Educação, Ciências e Letras de Iguatu, State University of Ceará, Fortaleza, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Postgraduate Program in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
2
|
Onifade IA, Umar HI, Aborode AT, Awaji AA, Jegede ID, Adeleye BH, Fatoba DO, Bello RO, Fakorede S, Idowu N. In silico study of selected alkaloids as dual inhibitors of β- and γ-secretases for Alzheimer's disease. J Alzheimers Dis 2025; 103:1191-1215. [PMID: 39956948 DOI: 10.1177/13872877241313049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) has become common as the number of aged people increases making it as a socioeconomic problem lately. To date, no success is recorded for disease-modifying therapies for AD but only drugs for symptomatic relief exist. Research has been centered on the role of amyloid-β on the pathogenesis of AD, which has led to the development of drugs that target Aβ (β- and γ-secretase inhibitors) to reduce the amount of Aβ formed. However, the existing β and γ-secretase inhibitors were associated with harmful side effects, low efficacy, and inability to cross the blood-brain barrier. OBJECTIVE This study therefore used in silico approach to predict the inhibitory properties of alkaloids as potential drug targets against AD. METHODS Thus, in this current study, 54 alkaloids from the PhytoHub server (phytohub.eu), and two approved drugs were docked against β-secretases. Additionally, galantamine and 5 alkaloids with the utmost binding potential with β-secretase were subjected to pharmacokinetics evaluation and docked against γ-secretase. RESULTS From the result, 5 compounds displayed for both docking periods, with demissidine, solasodine, tomatidine, and solanidine having better BE than the control drugs. Based on the pharmacokinetics evaluation, 4 compounds possessed good pharmacokinetic evaluation and biological activities than galantamine. CONCLUSIONS This study suggests that demissidine, solasodine, tomatidine, and solanidine are promising dual inhibitors against β- and γ-secretase proteins in silico. However, there is an urgent need to carry out in vitro and in vivo experiments on these new leads to validate the findings of this study.
Collapse
Affiliation(s)
- Isreal Ayobami Onifade
- Department of Biological Sciences, University at Albany - State University of New York, Albany, NY, USA
| | - Haruna Isiyaku Umar
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, Akure, Nigeria
| | | | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk, Saudi Arabia
| | | | | | | | | | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nike Idowu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
3
|
Chowdhury ZJ, Banik A, Robin TB, Chowdhury MR. Deciphering the potential of plant metabolites as insecticides against melon fly ( Zeugodacus cucurbitae): Exposing control alternatives to assure food security. Heliyon 2025; 11:e42034. [PMID: 39906852 PMCID: PMC11791130 DOI: 10.1016/j.heliyon.2025.e42034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
In the absence of effective biological or chemical controls, the melon fly poses a significant threat to food security, particularly impacting cucurbit crops in tropical and subtropical regions. Melon fly infestations have resulted in yield losses of 30 %-100 %, depending on the specific cucurbit species and season. Current control methods using synthetic chemicals are challenging due to their environmental and biological impacts. This study identified 59 phytocompounds with potential insecticidal properties against the melon fly, exhibiting minimal environmental impact. Key protein targets-hedgehog protein, spastin protein, and ABC-type heme transporter ABCB6 protein-were selected for binding affinity analysis. Camptothecin demonstrated the highest binding affinities for hedgehog protein (-57.32 kcal/mol) and spastin protein (-50.84 kcal/mol), while jervine had the strongest binding affinity for ABC-type heme transporter ABCB6 protein (-43.92 kcal/mol). The control compound, malathion, showed lower binding affinities across all three proteins. Stability of the top compound-protein complexes was further confirmed through a 100 ns molecular dynamics simulation. In insecticide-likeness evaluations, jervine consistently scored high, with camptothecin also performing well, while neriifolin ranked lower. The leading compounds showed no adverse effects that could diminish their insecticidal potential. These findings indicate that jervine and camptothecin are promising candidates for melon fly management, offering potential to prevent significant crop losses. However, as this study was conducted solely through computational methods, we recommend subsequent in vitro and field trials for the future drug development.
Collapse
Affiliation(s)
- Zinat Jahan Chowdhury
- Department of Entomology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- School of Environmental and Rural Science, University of New England, Armadale, NSW, 2351, Australia
| | - Anik Banik
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mohammed Rashed Chowdhury
- School of Environmental and Rural Science, University of New England, Armadale, NSW, 2351, Australia
- Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
4
|
Breckels LM, Hutchings C, Ingole KD, Kim S, Lilley KS, Makwana MV, McCaskie KJA, Villanueva E. Advances in spatial proteomics: Mapping proteome architecture from protein complexes to subcellular localizations. Cell Chem Biol 2024; 31:1665-1687. [PMID: 39303701 DOI: 10.1016/j.chembiol.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Proteins are responsible for most intracellular functions, which they perform as part of higher-order molecular complexes, located within defined subcellular niches. Localization is both dynamic and context specific and mislocalization underlies a multitude of diseases. It is thus vital to be able to measure the components of higher-order protein complexes and their subcellular location dynamically in order to fully understand cell biological processes. Here, we review the current range of highly complementary approaches that determine the subcellular organization of the proteome. We discuss the scale and resolution at which these approaches are best employed and the caveats that should be taken into consideration when applying them. We also look to the future and emerging technologies that are paving the way for a more comprehensive understanding of the functional roles of protein isoforms, which is essential for unraveling the complexities of cell biology and the development of disease treatments.
Collapse
Affiliation(s)
- Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Charlotte Hutchings
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kishor D Ingole
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Suyeon Kim
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Mehul V Makwana
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kieran J A McCaskie
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
5
|
Prome AA, Robin TB, Ahmed N, Rani NA, Ahmad I, Patel H, Bappy MNI, Zinnah KMA. A reverse docking approach to explore the anticancer potency of natural compounds by interfering metastasis and angiogenesis. J Biomol Struct Dyn 2024; 42:7174-7189. [PMID: 37526218 DOI: 10.1080/07391102.2023.2240895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Angiogenesis, which results in the formation of new blood and lymph vessels, is required to serve metastatic cancer progression. Cancer medications may target these two interconnected pathways. Phytocompounds have emerged as promising options for treating cancer. In this study, we used a reverse docking strategy to find new candidate molecules for cancer treatment that target both pathways. Following a literature study, the important cancer-causing proteins vascular endothelial growth factor D (VEGF-D) and basic fibroblast growth factor (bFGF) for angiogenesis and matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) for the metastatic pathway were targeted. Protein Data Bank was used to retrieve the structures of chosen proteins. 22 significant plant metabolites were identified as having anticancer activity. To determine the important protein binding residues, active site prediction was used. Using Lenvatinib and Withaferin A as reference ligands, the binding affinity of certain proteins for plant metabolites was determined by docking analysis. Homoharringtonine and viniferin, both have higher binding affinities when compared to reference ligands, with docking scores of -180.96 and -180.36 against the protein MMP-9, respectively. Moreover, Viniferin showed the highest binding affinity with both MMP-9 and MMP-2 proteins, which were then subjected to a 100-ns molecular dynamic simulation. where they were found to be significantly stable. In pharmacoinformatics investigations, the majority of our compounds were found to be non-toxic for the host. In this study, we suggested natural substances as cutting-edge anticancer treatments that target both angiogenesis and metastasis, which may aid in accelerating drug development and identifying viable therapeutic candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anindita Ash Prome
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nadim Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Md Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Md Ali Zinnah
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
6
|
Amin Rani N, Moin AT, Patil R, Barketullah Robin T, Zubair T, Nawal N, Sami MRS, Morshed MM, Zhai J, Xue M, Hossain M, Zheng C, Abul Manchur M, Islam NN. Designing a polyvalent vaccine targeting multiple strains of varicella zoster virus using integrated bioinformatics approaches. Front Microbiol 2023; 14:1291868. [PMID: 38075876 PMCID: PMC10704101 DOI: 10.3389/fmicb.2023.1291868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2024] Open
Abstract
The Varicella Zoster Virus (VZV) presents a global health challenge due to its dual manifestations of chickenpox and shingles. Despite vaccination efforts, incomplete coverage, and waning immunity lead to recurrent infections, especially in aging and immunocompromised individuals. Existing vaccines prevent chickenpox but can trigger the reactivation of shingles. To address these limitations, we propose a polyvalent multiepitope subunit vaccine targeting key envelope glycoproteins of VZV. Through bioinformatics approaches, we selected six glycoproteins that are crucial for viral infection. Epitope mapping led to the identification of cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B cell linear (LBL) epitopes. Incorporating strong immunostimulants, we designed two vaccine constructs, demonstrating high antigenicity, solubility, stability, and compatibility with Toll-like receptors (TLRs). Molecular docking and dynamics simulations underscored the stability and affinity of the vaccine constructs with TLRs. These findings lay the foundation for a comprehensive solution to VZV infections, addressing the challenges of incomplete immunity and shingles reactivation. By employing advanced immunoinformatics and dynamics strategies, we have developed a promising polyvalent multiepitope subunit vaccine candidate, poised to enhance protection against VZV and its associated diseases. Further validation through in vivo studies is crucial to confirm the effectiveness and potential of the vaccine to curb the spread of VZV. This innovative approach not only contributes to VZV control but also offers insights into tailored vaccine design strategies against complex viral pathogens.
Collapse
Affiliation(s)
- Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Rajesh Patil
- Sinhgad Technical Education Society’s, Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy, Pune, India
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Nafisa Nawal
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md. Razwan Sardar Sami
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Masud Morshed
- Department of Pharmacy, International Islamic University Chittagong, Chattogram, Bangladesh
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mohabbat Hossain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Mohammed Abul Manchur
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Nazneen Naher Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
7
|
Patel M, Bazaid AS, Azhar EI, Gattan HS, Binsaleh NK, Patel M, Surti M, Adnan M. Novel phytochemical inhibitors targeting monkeypox virus thymidine and serine/threonine kinase: integrating computational modeling and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:13679-13695. [PMID: 36852556 DOI: 10.1080/07391102.2023.2179547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
Due to the rapid spread of the monkeypox virus and rise in the number of cases, there is an urgent need for the development of effective drugs against the infection. Serine/threonine protein kinase (Ser/Thr kinase) and Thymidine Kinase (TK) plays an imperative role in the replication and virulence of monkeypox virus and thus is deliberated as an attractive target in anti-viral drug development. In the present study, the 3D structure of monkeypox virus Ser/Thr kinase and TK was generated via molecular modeling techniques and performed their thorough structural analysis. We have screened potent anti-viral phytochemicals from the literature to inhibit Ser/Thr kinase and TK. As part of the initial screening, the physicochemical properties of the compounds were examined. Following this, a structure-based molecular docking technique was used to select compounds based on their binding affinity towards Ser/Thr kinase and TK. In order to find more potent hits against Ser/Thr kinase and TK, further examinations of ADMET properties, PAINS patterns and blood-brain barrier permeability were conducted. As a result, thalimonine and galanthamine were identified from the screening process bearing appreciable binding affinity towards Ser/Thr kinase and TK respectively, which showed a worthy set of drug-like properties. In the end, molecular dynamics simulations were performed for 100 ns, which showed decent stability of both protein-ligand complex throughout the trajectory. Due to the possibility that both monkeypox virus target proteins may be inhibited by thalimonine and galanthamine, our study highlights the need to investigate in vivo effects of thalimonine and galanthamine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Esam I Azhar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Saudi Arabia
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Saudi Arabia
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
| | - Naif K Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Mirav Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Malvi Surti
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mohd Adnan
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
8
|
Basharat Z, Khan K, Jalal K, Alnasser SM, Majeed S, Zehra M. Inferring Therapeutic Targets in Candida albicans and Possible Inhibition through Natural Products: A Binding and Physiological Based Pharmacokinetics Snapshot. Life (Basel) 2022; 12:1743. [PMID: 36362898 PMCID: PMC9692583 DOI: 10.3390/life12111743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 09/10/2024] Open
Abstract
Despite being responsible for invasive infections, fungal pathogens have been underrepresented in computer aided therapeutic target mining and drug design. Excess of Candida albicans causes candidiasis, causative of thrush and vaginal infection due to off-balance. In this study, we attempted to mine drug targets (n = 46) using a subtractive proteomic approach in this pathogenic yeast and screen natural products with inhibition potential against fructose-bisphosphate aldolase (FBA) of the C. albicans. The top compound selected on the basis of best docking score from traditional Indian medicine/Ayurvedic library was (4-Hydroxybenzyl)thiocarbamic acid, from the ZINC FBA inhibitor library was ZINC13507461 (IUPAC name: [(2R)-2-hydroxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate), and from traditional Tibetan medicine/Sowa rigpa was Chelerythrine (IUPAC name: 1,2-Dimethoxy-12-methyl-9H-[1,3]benzodioxolo[5,6-c]phenanthridin-12-ium), compared to the control (2E)-1-(4-nitrophenyl)-2-[(4-nitrophenyl)methylidene]hydrazine. No Ames toxicity was predicted for prioritized compounds while control depicted this toxicity. (4-Hydroxybenzyl)thiocarbamic acid showed hepatotoxicity, while Chelerythrine depicted hERG inhibition, which can lead to QT syndrome, so we recommend ZINC13507461 for further testing in lab. Pharmacological based pharmacokinetic modeling revealed that it has low bioavailability and hence, absorption in healthy state. In cirrhosis and renal impairment, absorption and plasma accumulation increased so we recommend further investigation into this occurrence and recommend high dosage in further tests to increase bioavailability.
Collapse
Affiliation(s)
- Zarrin Basharat
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sania Majeed
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Marium Zehra
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|