1
|
Li H, Zhao Y, Shi J, Chaijan M, Wang X, Yin M. Impact of Dehydration Processing on Scallop ( Patinopecten yessoensis) Adductor Muscle: Structural and Oxidative Insights. Foods 2025; 14:948. [PMID: 40231954 PMCID: PMC11941159 DOI: 10.3390/foods14060948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
This study investigated the impact of four drying techniques-hot air drying (HAD), vacuum hot air drying (VFAD), microwave drying (MWD), and vacuum freeze-drying (VFD)-on the structural, physicochemical, and functional properties of scallop adductor muscles, a critical marine resource in the food industry. The results demonstrated that VFD optimally preserved the ultrastructural integrity of the tissue, maintaining its surface fibrous architecture and achieving a superior recovery ration (78%) and rehydration ration (186.5%) compared to HAD, VFAD, and MWD. While the zeta potential remained statistically invariant across methods, HAD induced the largest particle agglomeration, followed by MWD. Notably, VFD enhanced protein stability, increasing the sulfhydryl content by 163.2% and reducing carbonyl formation by 48.1% relative to HAD, whereas MWD had the opposite effect. Multispectral analyses revealed the severe disruption of protein secondary and tertiary structures after MWD, while VFD minimized conformational denaturation. Statistical modeling ranked the drying sensitivity parameters as follows: surface hydrophobicity > hardness> β-turn content > dityrosine crosslinking > transverse relaxation time T23. These findings underscore VFD as the optimal method for mitigating structural degradation and oxidative damage in scallop processing, providing actionable insights to enhance the technofunctional quality of shelf-stable scallop products.
Collapse
Affiliation(s)
- Huaqiong Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.L.); (Y.Z.); (J.S.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Yulong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.L.); (Y.Z.); (J.S.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Jian Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.L.); (Y.Z.); (J.S.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.L.); (Y.Z.); (J.S.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.L.); (Y.Z.); (J.S.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| |
Collapse
|
2
|
Xu H, Pan J, Ma C, Mintah BK, Dabbour M, Huang L, Dai C, Ma H, He R. Stereo-hindrance effect and oxidation cross-linking induced by ultrasound-assisted sodium alginate-glycation inhibit lysinoalanine formation in silkworm pupa protein. Food Chem 2025; 463:141284. [PMID: 39298842 DOI: 10.1016/j.foodchem.2024.141284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Silkworm pupa protein isolate (SPPI) is rich in amino acids, making it chemically reactive, degradable, and easy to form lysinoalanine (LAL). We investigated how conformational cross-linking, induced by ultrasound-assisted sodium alginate, could inhibit the formation of LAL during the preparation of SPPI. Glycoconjugated SPPI (using 1 % sodium alginate under ultrasonication) showed the lowest LAL content i.e., 7.403 μg·mg-1, representing a 49.58 % decrease, with reference to the control. The ionic, hydrogen, and covalent bonds in the glycoconjugate increased by 171.79 %, 8.48 %, and 35.56 %, respectively. Glycation decreased arginine by 28.92 % and caused the oxidation of tyrosine, methionine and proline to form carbonyl groups. Some precursor amino acids, including lysine, serine, cysteine and threonine were not degraded during the combined treatment. The macromolecular aggregation caused by structural modifications strengthened the steric resistance of LAL cross-linking. The study outcomes provide a novel approach and theoretical basis for inhibition of LAL formation in SPPI.
Collapse
Affiliation(s)
- Haining Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chunfang Ma
- Shandong Yuwang Ecological Food Industry, Yucheng 251200, China
| | - Benjamin Kumah Mintah
- CSIR - Food Research Institute, P.O. Box M20, Accra, Ghana; Department of Agro-processing Technology and Food Bio-sciences, CSIR College of Science and Technology (CCST), Accra, Ghana
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
Köllmann N, Vringer R, Mishra P, Zhang L, van der Goot AJ. Near-infrared spectroscopy to quantify overall thermal process intensity during high-moisture extrusion of soy protein concentrate. Food Res Int 2024; 186:114320. [PMID: 38729710 DOI: 10.1016/j.foodres.2024.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
High-moisture extrusion (HME) is widely used to produce meat analogues. During HME the plant-based materials experience thermal and mechanical stresses. It is complicated to separate their effects on the final products because these effects are interrelated. In this study we hypothesize that the intensity of the thermal treatment can explain a large part of the physicochemical changes that occur during extrusion. For this reason, near-infrared (NIR) spectroscopy was used as a novel method to quantify the thermal process intensity during HME. High-temperature shear cell (HTSC) processing was used to create a partial least squares (PLS) regression curve for processing temperature under controlled processing conditions (root mean standard error of cross-validation (RMSECV) = 4.00 °C, coefficient of determination of cross-validation (R2CV) = 0.97). This PLS regression model was then applied to HME extrudates produced at different screw speeds (200-1200 rpm) and barrel temperatures (100-160 °C) with two different screw profiles to calculate the equivalent shear cell temperature as a measure for thermal process intensity. This equivalent shear cell temperature reflects the effects of changes in local temperature conditions, residence time and thermal stresses. Furthermore, it can be related to the degree of texturization of the extrudates. This information can be used to gain new insights into the effect of various process parameters during HME on the thermal process intensity and extrudate quality.
Collapse
Affiliation(s)
- Nienke Köllmann
- Food Process Engineering, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700AA Wageningen, the Netherlands
| | - Rozemarijn Vringer
- Food Process Engineering, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700AA Wageningen, the Netherlands
| | - Puneet Mishra
- Wageningen Food and Biobased Research, Bornse Weilanden 9, P.O. Box 17, 6700AA Wageningen, the Netherlands
| | - Lu Zhang
- Food Process Engineering, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700AA Wageningen, the Netherlands
| | - Atze Jan van der Goot
- Food Process Engineering, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700AA Wageningen, the Netherlands.
| |
Collapse
|
4
|
Nobari Moghaddam H, Tamiji Z, Amini M, Khoshayand MR, Kobarfrad F, Sadeghi N, Hajimahmoodi M. Development of non-destructive methods for the assessment of authenticity of sports whey protein supplements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:339-351. [PMID: 38319919 DOI: 10.1080/19440049.2024.2311218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In the category of sports supplements, whey protein powder is one of the popular supplements for muscle building applications. Therefore, verification of the sport supplements as authentic products has become a universal concern. This work aimed to propose vibrational spectroscopy including near infrared (NIR) and infrared (IR) as rapid and non-destructive testing tools for the detection and quantification of maltodextrin, milk powder and milk whey powder in whey protein supplements. Initially, principal component analysis was applied to data for pattern recognition and the results displayed a fine pattern of discrimination. Partial least square discrimination analysis (PLS-DA) and K-nearest neighbours (KNN) were exploited as supervised method modelling classification. This process was done in order to respond to two vital questions whether the sample is adulterated or not and what is the kind of adulteration. PLS-DA showed better classification results rather than KNN according to the figure of merits of the model. Partial least square regression (PLSR) was employed on pre-treated spectra to quantify the amount of adulteration in sport whey supplements. Eventually, it seems vibrational spectroscopy could be implemented as a simple, and low-cost analysis method for the detection and quantification of mentioned adulterants in whey protein supplements.
Collapse
Affiliation(s)
- Hanieh Nobari Moghaddam
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Tamiji
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemometrics, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemometrics, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfrad
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naficeh Sadeghi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|