1
|
Zou D, Xin X, Xu H, Xu Y, Xu T. Development and validation of a cancer-associated fibroblast gene signature-based model for predicting immunotherapy response in colon cancer. Sci Rep 2025; 15:16550. [PMID: 40360558 PMCID: PMC12075585 DOI: 10.1038/s41598-025-01185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
The efficacy of immune checkpoint inhibitors in colon cancer has been established, and there is an urgent need to identify new molecular markers for colon cancer immunotherapy to guide clinical decisions. Using the "EPIC" and "MCPcounter" R packages to conduct cancer-associated fibroblast (CAF) infiltration scoring on colon cancer samples from the TCGA database and the GEO database, the WGCNA analysis was performed on the two databases' samples based on the CAF infiltration scores to screen for CAF-related genes. LASSO regression analysis was used to construct a risk model with these genes. Comprehensive bioinformatics analysis was conducted on the constructed model to evaluate the stability of its prediction of CAF infiltration abundance and the stability of its prediction of immunotherapy efficacy. The newly constructed risk model could well reflect the abundance of CAF infiltration in colon cancer, with a correlation coefficient of 0.91 in the training cohort TCGA-COAD and 0.88 in the validation cohort GSE39582. GSEA analysis revealed that CAF is closely related to functions associated with extracellular matrix remodeling. The constructed risk model can predict the efficacy of immunotherapy in colon cancer well, with the high-risk group showing significantly poorer immunotherapy response than the low-risk group, with an expected effective rate of immunotherapy of 68 vs. 24% in the training group (P < 0.001) and 64 vs. 26% in the validation group (P < 0.001). The AUC value for predicting immunotherapy response by the risk model in the training group was 0.780 (95% CI 0.736-0.820), and in the validation group, the AUC value was 0.774 (95% CI 0.735-0.810). Drug sensitivity analysis showed that the expected chemotherapeutic effect in the low-risk group was superior to that in the high-risk group. CAF is associated with immunosuppression and drug resistance. Predicting the efficacy of immunotherapy in colon cancer based on the abundance of CAF infiltration is a feasible approach. For the high-risk population identified by our model, clinical consideration should be given to prioritizing non-immunotherapy approaches to avoid potential risks associated with immunotherapy.
Collapse
Affiliation(s)
- Daoyang Zou
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xi Xin
- Ganzhou People's Hospital, Ganzhou, China
| | - Huangzhen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yunxian Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tianwen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
2
|
Liu W, Li L, Guo L, Li H, Tang Z, Wang X, Huang L, Sun Y. Dasatinib demonstrates efficacy in organoid derived paclitaxel-resistant Trp53/Cdh1-deficient mouse gastric adenocarcinoma with peritoneal metastasis. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:16. [PMID: 40299206 PMCID: PMC12040775 DOI: 10.1186/s13619-025-00232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Gastric cancer peritoneal metastasis (GCPM) typically indicates a poor clinical prognosis and is frequently observed in diffuse gastric cancer (GC) patients with CDH1 loss of function. GCPM characterized for its aggressiveness and resistance to chemotherapy, most notably paclitaxel (PTX), poses significant treatment challenges. Previously, no mouse gastric adenocarcinoma (MGA) cell lines with Trp53 (encoding mouse p53) and Cdh1 (encoding mouse E-cadherin) mutations and a high potential for peritoneal metastasis in mice have been established. Here, we derived a mouse GC cell line, called MTC, from subcutaneously transplanted mouse Trp53-/-Cdh1-/- GC organoids. Through matching the short tandem repeat profile of MTC with those in current cell banks, we verified the uniqueness of MTC. Furtherly, we confirmed the features of MTC by detecting the expression of p53, E-cadherin, and pan-CK. After long-term exposure of the original MTC line to PTX, we developed a more aggressive, PTX-resistant cell line, termed MTC-R. Compared with MTC, MTC-R demonstrated enhanced tumorigenicity and high potential for peritoneal metastasis in subcutaneous and intraperitoneal tumour models both in BALB/c nude mice and C57BL/6 J mice. Transcriptome analysis revealed the ECM‒receptor interaction pathway activation during the development of PTX resistance, and dasatinib (DASA) was identified as a potential drug targeting this pathway. DASA showed promise in ameliorating disease progression and improving overall survival in MTC-R GCPM model in C57BL/6 J mice. Overall, we established a novel MGA cell line with Trp53 and Cdh1 mutations and its PTX-resistant variant and demonstrated the efficacy of DASA in treating PTX-resistant GCPM.
Collapse
Affiliation(s)
- Wenshuai Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Retroperitoneal Sarcoma Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lingmeng Li
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Leilei Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haojie Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaoqing Tang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Liyu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Qin C, Qin H, Xie H, Li Y, Bi A, Liao X, Yang K, Lu C, Peng T, Zhu G. The Role of MATN3 in Cancer Prognosis and Immune Infiltration Across Multiple Tumor Types. J Cancer 2025; 16:1519-1537. [PMID: 39991588 PMCID: PMC11843250 DOI: 10.7150/jca.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/08/2025] [Indexed: 02/25/2025] Open
Abstract
Background: MATN3 is a member of the matrix protein family and is involved in the regulation of osteoarthritis as well as the development of gastric cancer. We investigated the role of MATN3 in pan-cancer and validated this result by in vitro experiments. Material and Methods: We applied multiple databases to explore the expression of MATN3 in 33 types of tumors. Kaplan-Meier survival analysis is performed to understand the effect of MATN3 on Prognostic value in patients with different cancer types. The TIMER database was applied to explore the relationship between MATN3 and immune checkpoint genes, immunomodulatory genes, and immune infiltration, the Sanger box was applied to explore the relationship between MATN3 and methylation, the Genomic Cancer Analysis database was utilized to explore the relationship between MATN3 expression and pharmacological sensitivity, and the STRING database was used to explore the co-expressed genes and to complete the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Data from The Cancer Genome Atlas as well as Genotype-Tissue Expression databases were statistically analyzed and visualized using the R software. Immunohistochemistry and Western blotting for detection of MATN3 expression. CCK-8 and clone formation were used to detect cell proliferation, Wound-healing assay and transwell invasion were used to detect cell migration and invasion ability. Results: MATN3 is overexpressed in most cancer types, indicating a poorer prognosis. It is closely linked to methylation, immunomodulatory genes, and immune checkpoint genes, contributing to immune infiltration in various cancer types. In vitro experiments showed that silencing MATN3 inhibited cell proliferation, migration, and invasion ability. Conclusions: MATN3 is involved in the immune infiltration of cancer and affects the prognosis of many cancer types, and can be used as an immune as well as prognostic biomarker for pan-cancer.
Collapse
Affiliation(s)
- Chongjiu Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haifei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haixiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yuhua Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Aoyang Bi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Kejian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chunmiao Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
| |
Collapse
|
4
|
Zeng C, Xu C, Wei Y, Ma F, Wang Y. Training and experimental validation a novel anoikis- and epithelial‒mesenchymal transition-related signature for evaluating prognosis and predicting immunotherapy efficacy in gastric cancer. J Cancer 2025; 16:1078-1100. [PMID: 39895782 PMCID: PMC11786038 DOI: 10.7150/jca.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/22/2024] [Indexed: 02/04/2025] Open
Abstract
Anoikis resistance and improper activation of epithelial‒mesenchymal transition (EMT) are critical factors in tumor metastasis and progression. Despite their interaction, the combined impact of anoikis and EMT on prognosis and immunotherapy in gastric cancer remains underexplored. In this study, we identified 354 anoikis- and EMT-related genes (AERGs) through Venn analysis and performed unsupervised clustering to classify gastric cancer patients into two molecular clusters: A and B. Molecular cluster A showed poor prognosis and an immunosuppressive tumor microenvironment, suggesting a "cold tumor" phenotype. Then, a novel AERG-related prognostic model comprising CD24, CRYAB, MMP11, MUC4, PRKAA2, SERPINE1, SKP2, and TP53 was constructed and validated, accurately predicting the 1-, 3-, and 5-year survival rates of gastric cancer patients. Multivariate analysis revealed that the AERG-related risk score was an independent prognostic factor (hazard ratio = 1.651, 95% confidence interval = 1.429-1.907, P<0.001). Further studies demonstrated that, compared to the high-risk group, the low-risk group exhibited higher CD8+ T cell infiltration, tumor mutational burden, immunophenoscores, and lower tumor immune dysfunction and exclusion scores, indicating potential sensitivity to immunotherapy. RT‒qPCR and immunohistochemical staining validated the expression levels of the model's molecular markers. Overall, our AERG-related model shows promise for predicting outcomes and guiding the selection of tailored and precise therapies for gastric cancer patients.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chang Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhan Wei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, 213000, China
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu Province, 213000, China
| |
Collapse
|
5
|
Li J, Xie B, Wang H, Wang Q, Wu Y. Investigating MATN3 and ASPN as novel drivers of gastric cancer progression via EMT pathways. Hum Mol Genet 2024; 33:2035-2050. [PMID: 39301785 DOI: 10.1093/hmg/ddae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related deaths globally, necessitating the identification of novel therapeutic targets. This study investigates the roles of MATN3 and ASPN in GC progression via the epithelial-mesenchymal transition (EMT) pathway. Analysis of the Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset revealed that both MATN3 and ASPN are significantly upregulated in GC tissues and correlate with poor patient survival. Protein-protein interaction and co-expression analyses confirmed a direct interaction between MATN3 and ASPN, suggesting their synergistic role in EMT activation. Functional assays demonstrated that MATN3 promotes GC cell proliferation, migration, and invasion, while its knockdown inhibits these malignant behaviors and induces apoptosis. ASPN overexpression further amplified these oncogenic effects. In vivo, studies in a mouse model corroborated that co-overexpression of MATN3 and ASPN enhances tumor growth and metastasis. These findings highlight the MATN3-ASPN axis as a potential therapeutic target in GC, offering new insights into the molecular mechanisms driving GC progression.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou 215004, Jiangsu Province, China
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - Bo Xie
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - Hu Wang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - QingKang Wang
- Department of Oncological Surgery, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu 233004, Anhui Province, China
| | - YongYou Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou 215004, Jiangsu Province, China
| |
Collapse
|
6
|
Hong J, Jin HJ, Choi MR, Lim DWT, Park JE, Kim YS, Lim SB. Matrisomics: Beyond the extracellular matrix for unveiling tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189178. [PMID: 39241895 DOI: 10.1016/j.bbcan.2024.189178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The matrisome, a group of proteins constituting or interacting with the extracellular matrix (ECM), has garnered attention as a potent regulator of cancer progression. An increasing number of studies have focused on cancer matrisome utilizing diverse -omics approaches. Here, we present diverse patterns of matrisomal populations within cancer tissues, exploring recent -omics studies spanning different '-omics' levels (epigenomics, genomics, transcriptomics, and proteomics), as well as newly developed sequencing techniques such as single-cell RNA sequencing and spatial transcriptomics. Some matrisome genes showed uniform patterns of upregulated or downregulated expression across various cancers, while others displayed different expression patterns according to the cancer types. This matrisomal dysregulation in cancer was further examined according to their originating cell type and spatial location in the tumor tissue. Experimental studies were also collected to demonstrate the identified roles of matrisome genes during cancer progression. Interestingly, many studies on cancer matrisome have suggested matrisome genes as effective biomarkers in cancer research. Although the specific mechanisms and clinical applications of cancer matrisome have not yet been fully elucidated, recent techniques and analyses on cancer matrisomics have emphasized their biological importance in cancer progression and their clinical implications in deciding the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Jiwon Hong
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Hyo Joon Jin
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Mi Ran Choi
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre, Singapore 168583, Singapore
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
7
|
Cai L, Kolonin MG, Anastassiou D. The fibro-adipogenic progenitor APOD+DCN+LUM+ cell population in aggressive carcinomas. Cancer Metastasis Rev 2024; 43:977-980. [PMID: 38466528 PMCID: PMC11300568 DOI: 10.1007/s10555-024-10181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
We identified a progenitor cell population highly enriched in samples from invasive and chemo-resistant carcinomas, characterized by a well-defined multigene signature including APOD, DCN, and LUM. This cell population has previously been labeled as consisting of inflammatory cancer-associated fibroblasts (iCAFs). The same signature characterizes naturally occurring fibro-adipogenic progenitors (FAPs) as well as stromal cells abundant in normal adipose tissue. Our analysis of human gene expression databases provides evidence that adipose stromal cells (ASCs) are recruited by tumors and undergo differentiation into CAFs during cancer progression to invasive and chemotherapy-resistant stages.
Collapse
Affiliation(s)
- Lingyi Cai
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Sciences Center at Houston, Houston, TX, USA.
| | - Dimitris Anastassiou
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Electrical Engineering, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Fisher SA, Patrick K, Hoang T, Marcq E, Behrouzfar K, Young S, Miller TJ, Robinson BWS, Bueno R, Nowak AK, Lesterhuis WJ, Morahan G, Lake RA. The MexTAg collaborative cross: host genetics affects asbestos related disease latency, but has little influence once tumours develop. FRONTIERS IN TOXICOLOGY 2024; 6:1373003. [PMID: 38694815 PMCID: PMC11061428 DOI: 10.3389/ftox.2024.1373003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Objectives: This study combines two innovative mouse models in a major gene discovery project to assess the influence of host genetics on asbestos related disease (ARD). Conventional genetics studies provided evidence that some susceptibility to mesothelioma is genetic. However, the identification of host modifier genes, the roles they may play, and whether they contribute to disease susceptibility remain unknown. Here we report a study designed to rapidly identify genes associated with mesothelioma susceptibility by combining the Collaborative Cross (CC) resource with the well-characterised MexTAg mesothelioma mouse model. Methods: The CC is a powerful mouse resource that harnesses over 90% of common genetic variation in the mouse species, allowing rapid identification of genes mediating complex traits. MexTAg mice rapidly, uniformly, and predictably develop mesothelioma, but only after asbestos exposure. To assess the influence of host genetics on ARD, we crossed 72 genetically distinct CC mouse strains with MexTAg mice and exposed the resulting CC-MexTAg (CCMT) progeny to asbestos and monitored them for traits including overall survival, the time to ARD onset (latency), the time between ARD onset and euthanasia (disease progression) and ascites volume. We identified phenotype-specific modifier genes associated with these traits and we validated the role of human orthologues in asbestos-induced carcinogenesis using human mesothelioma datasets. Results: We generated 72 genetically distinct CCMT strains and exposed their progeny (2,562 in total) to asbestos. Reflecting the genetic diversity of the CC, there was considerable variation in overall survival and disease latency. Surprisingly, however, there was no variation in disease progression, demonstrating that host genetic factors do have a significant influence during disease latency but have a limited role once disease is established. Quantitative trait loci (QTL) affecting ARD survival/latency were identified on chromosomes 6, 12 and X. Of the 97-protein coding candidate modifier genes that spanned these QTL, eight genes (CPED1, ORS1, NDUFA1, HS1BP3, IL13RA1, LSM8, TES and TSPAN12) were found to significantly affect outcome in both CCMT and human mesothelioma datasets. Conclusion: Host genetic factors affect susceptibility to development of asbestos associated disease. However, following mesothelioma establishment, genetic variation in molecular or immunological mechanisms did not affect disease progression. Identification of multiple candidate modifier genes and their human homologues with known associations in other advanced stage or metastatic cancers highlights the complexity of ARD and may provide a pathway to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Scott A. Fisher
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Kimberley Patrick
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Tracy Hoang
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Elly Marcq
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiarash Behrouzfar
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| | - Sylvia Young
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Timothy J. Miller
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Bruce W. S. Robinson
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Raphael Bueno
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | | | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases (NCARD), Perth, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Song J, Liao H, Li H, Chen H, Si H, Wang J, Bai X. Identification of a novel cancer-associated fibroblasts gene signature based on bioinformatics analysis to predict prognosis and therapeutic responses in breast cancer. Heliyon 2024; 10:e29216. [PMID: 38601538 PMCID: PMC11004657 DOI: 10.1016/j.heliyon.2024.e29216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) provide suitable conditions for growth of tumor cell and facilitate tumor progression. Hence, we aimed to identify a CAFs-related gene signature associated with the prognosis of patients with breast cancer (BRCA). We downloaded datasets from Gene Expression Omnibus (GEO) and confirmed the correlation between CAFs infiltration scores and prognosis. By performing weighted gene co-expression network analysis (WGCNA) and Lasso Cox regression analysis, we constructed a four-gene (COL5A3, FN1, POSTN, and RARRES2) prognostic CAFs signature model. Based on the median risk score of CAFs, patients with BRCA were divided into high- and low-risk groups. Compared with low-risk group, patients in high-risk group exhibited a poor prognosis and limited response to immunotherapy. Furthermore, patients with high CAFs risk scores were found to have a detrimental prognosis due to the induction of immunosuppressive cell infiltration, resulting in an immunosuppressive tumor microenvironment. Importantly, we found that CAFs overexpressing FN1 and POSTN significantly promoted the wound healing and invasion ability of tumor cells in vitro validation. Taking together, we identified a four-gene prognostic CAFs signature, which was proven to be a reliable indicator for prognosis and therapeutic efficacy in patients with BRCA. This study provided evidence for novel CAFs-based stromal therapy.
Collapse
Affiliation(s)
- Jin Song
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huifeng Liao
- Department of General Surgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huayan Li
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Hongye Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huiyan Si
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiandong Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xue Bai
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
10
|
Sadeghi M, Dehnavi S, Sharifat M, Amiri AM, Khodadadi A. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon 2024; 10:e27480. [PMID: 38463798 PMCID: PMC10923864 DOI: 10.1016/j.heliyon.2024.e27480] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The tumor microenvironment (TME) with vital role in cancer progression is composed of various cells such as endothelial cells, immune cells, and mesenchymal stem cells. In particular, innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, innate lymphoid cells, γδT lymphocytes, and natural killer cells can either promote or suppress tumor progression when present in the TME. An increase in research on the cross-talk between the TME and innate immune cells will lead to new approaches for anti-tumoral therapeutic interventions. This review primarily focuses on the biology of innate immune cells and their main functions in the TME. In addition, it summarizes several innate immune-based immunotherapies that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moosa Sharifat
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|