1
|
Rodríguez-Seijo A, Pérez-Rodríguez P, Arias-Estévez M, Gómez-Armesto A, Conde-Cid M, Santás-Miguel V, Campillo-Cora C, Ollio I, Lloret E, Martínez-Martínez S, Zornoza R, Waeyenberge L, Schrader S, Brandt KK, Loit K, Põldmets M, Shanskiy M, Peltoniemi K, Hagner M, Calviño DF. Occurrence, persistence and risk assessment of pesticide residues in European wheat fields: A continental scale approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138291. [PMID: 40347612 DOI: 10.1016/j.jhazmat.2025.138291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025]
Abstract
Pesticide residues in agricultural soils represent an environmental concern that requires special attention due to their potential ecological and public health risks. We analyzed 614 pesticides in 188 wheat fields across Europe subjected to both conventional and organic farming systems. At least one pesticide residue was detected in 141 soils. Seventy-eight pesticides or their metabolites were detected. The presence of pesticides was significantly higher in both number and concentration in conventional fileds (up to 0.98 mg kg-1) compared to organically managed sites (up to 0.40 mg kg-1). A total of 88 % of conventional fields and 63 % of organic fields contained two or more pesticides. Conversion from conventional to organic farming does not guarantee that soils will be pesticide-free in the short term. Fenbutatin oxide was the most frequently detected pesticide in both farming systems, followed by AMPA. Other substances, such as boscalid, epoxiconazole, diflufenican, tebuconazole, dinoterb, bixafen, and DEET, were found in ≥ 10 % of samples. Some Persistent Organic Pollutants, including dieldrin, endosulfan sulphate, and chlorpyrifos, were also detected. Ecological risks were higher in conventionally managed fields, with 46 % exhibiting high-risk levels, compared to just 1 % in organic fields. Epoxiconazole and boscalid were the substances with the highest risk levels.
Collapse
Affiliation(s)
- Andrés Rodríguez-Seijo
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Paula Pérez-Rodríguez
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Manuel Arias-Estévez
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Antía Gómez-Armesto
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Manuel Conde-Cid
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain.
| | - Vanesa Santás-Miguel
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Claudia Campillo-Cora
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Irene Ollio
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, Cartagena 30203, Spain; Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Plaza del Hospital s/n, Cartagena 30202, Spain
| | - Eva Lloret
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, Cartagena 30203, Spain; Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Plaza del Hospital s/n, Cartagena 30202, Spain
| | - Silvia Martínez-Martínez
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, Cartagena 30203, Spain
| | - Raúl Zornoza
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, Cartagena 30203, Spain; Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Plaza del Hospital s/n, Cartagena 30202, Spain
| | - Lieven Waeyenberge
- ILVO (Flanders Research Institute for Agriculture, Fisheries and Food), Plant Sciences Unit, Burg. Van Gansberghelaan 96, Merelbeke B-9820, Belgium
| | - Stefan Schrader
- Thünen Institute of Biodiversity, Bundesallee 65, Braunschweig D-38116, Germany
| | - Kristian Koefoed Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Kaire Loit
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Fr. R. Kreutzwaldi St., Tartu 51006, Estonia
| | - Marian Põldmets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Fr. R. Kreutzwaldi St., Tartu 51006, Estonia
| | - Merrit Shanskiy
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Fr. R. Kreutzwaldi St., Tartu 51006, Estonia
| | - Krista Peltoniemi
- Natural Resources Institute Finland (Luke), Natural resources, Soil ecosystems, Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Marleena Hagner
- Natural Resources Institute Finland (Luke), Natural resources, Plant Health, Tietotie 4, Helsinki FI-31600, Finland
| | - David Fernández Calviño
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| |
Collapse
|
2
|
Song SL, Chen XY, Zhao J, Li YY, Xiong YM, Lv L, Chang J, Wang H, Li XH, Qin ZF. Effects of the Fungicide Prothioconazole on Lipid Metabolism in Mice: Whitening Alterations of Brown Adipose Tissue. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18155-18166. [PMID: 39361549 DOI: 10.1021/acs.est.4c05666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
With considerable concerns about the associations between metabolic disorders and agricultural biocides, there are scattered data suggesting that the triazole fungicide prothioconazole (PTC) at lower doses than the no observed adverse effect level of 5000 μg/kg/d possibly has the potential to disrupt glycolipid metabolism in mammals. Here, we investigated the effects of 50, 500, and 5000 μg/kg/d of PTC on glycolipid metabolism in mice following 8 weeks of administration via drinking water, with specific attention on brown adipose tissue (BAT) and white adipose tissue (WAT) in addition to the liver. We found that along with the increased serum triglyceride level in the 5000 μg/kg/d group, small fatty vacuoles occurred in livers in all treatment groups, indicating lipid accumulation. No change in WAT was observed, but PTC caused BAT whitening, characterized by adipocyte hypertrophy, more unilocular adipocytes with enlarged lipid droplets, reduced UCP1 levels, and down-regulated Doi2 expression, and even the dose of 50 μg/kg/d was effective. Transcriptomic analysis revealed immune inhibition and circadian rhythm disturbance in BAT from the 5000 μg/kg/d group, which are in agreement with BAT whitening and inactivation. On employing the C3H10T1/2 cells in vitro, we found that PTC treatment concentration-dependently promoted lipid accumulation in brown adipocytes, along with altered expression of thermogenesis-related and circadian genes. Taken together, our study shows that low doses of PTC caused BAT whitening, calling for much attention to the new target by pollutants.
Collapse
Affiliation(s)
- Shi-Lin Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huili Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xing Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhao H, Hu J. Degradation of Isopyrazam in Soil: Kinetics, Microbial Mechanism, and Ecotoxicity of the Transformation Product. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18880-18889. [PMID: 39162190 DOI: 10.1021/acs.jafc.4c05227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The degradation of isopyrazam in soils was investigated through kinetics, microbial contributions, and transformation products (TPs). Then the acute toxicity of isopyrazam and its TP to Chlorella pyrenoidosa was explored. The half-lives of isopyrazam in cinnamon soil, red soil, and black soil were 82.2, 141.7, and 120.3 days, respectively. A strain (Bacillus sp. A01) isolated from cinnamon soil could degrade 72.9% of isopyrazam at 10 mg/L after 6 days in a Luria-Bertani medium. Six TPs were observed with Bacillus sp. A01, and three of them were found in soil as well. Through the inhibition of cytochrome P450 enzymes, the production of oxidized isopyrazam was blocked. Microbial mediated hydroxylation, epoxidation, and dehydration were the main degradation pathways of isopyrazam. The acute toxicity results showed that the EC50 of 3-(difluoromethyl)-N-(9-(2-hydroxypropan-2-yl)-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)-1-methyl-1H-pyrazole-4-carboxamide to Chlorella pyrenoidosa was 40 times higher than that of the parent. This work provides new insights for understanding the degradation behavior of isopyrazam in soil.
Collapse
Affiliation(s)
- Honglei Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
4
|
Lamnoi S, Boonupara T, Sumitsawan S, Vongruang P, Prapamontol T, Udomkun P, Kajitvichyanukul P. Unveiling the Aftermath: Exploring Residue Profiles of Insecticides, Herbicides, and Fungicides in Rice Straw, Soils, and Air Post-Mixed Pesticide-Contaminated Biomass Burning. TOXICS 2024; 12:86. [PMID: 38251041 PMCID: PMC10819870 DOI: 10.3390/toxics12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
This study delved into the impact of open biomass burning on the distribution of pesticide and polycyclic aromatic hydrocarbon (PAH) residues across soil, rice straw, total suspended particulates (TSP), particulate matter with aerodynamic diameter ≤ 10 µm (PM10), and aerosols. A combination of herbicides atrazine (ATZ) and diuron (DIU), fungicide carbendazim (CBD), and insecticide chlorpyriphos (CPF) was applied to biomass before burning. Post-burning, the primary soil pesticide shifted from propyzamide (67.6%) to chlorpyriphos (94.8%). Raw straw biomass retained residues from all pesticide groups, with chlorpyriphos notably dominating (79.7%). Ash residue analysis unveiled significant alterations, with elevated concentrations of chlorpyriphos and terbuthylazine, alongside the emergence of atrazine-desethyl and triadimenol. Pre-burning TSP analysis identified 15 pesticides, with linuron as the primary compound (51.8%). Post-burning, all 21 pesticides were detected, showing significant increases in metobromuron, atrazine-desethyl, and cyanazine concentrations. PM10 composition mirrored TSP but exhibited additional compounds and heightened concentrations, particularly for atrazine, linuron, and cyanazine. Aerosol analysis post-burning indicated a substantial 39.2-fold increase in atrazine concentration, accompanied by the presence of sebuthylazine, formothion, and propyzamide. Carcinogenic PAHs exhibited noteworthy post-burning increases, contributing around 90.1 and 86.9% of all detected PAHs in TSP and PM10, respectively. These insights advance understanding of pesticide dynamics in burning processes, crucial for implementing sustainable agricultural practices and safeguarding environmental and human health.
Collapse
Affiliation(s)
- Suteekan Lamnoi
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Sulak Sumitsawan
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Patipat Vongruang
- Environmental Health, School of Public Health, University of Phayao, Phayao 56000, Thailand;
| | - Tippawan Prapamontol
- Environmental and Health Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| |
Collapse
|