Peng M, Wang M, An W, Wu T, Zhang Y, Ge F, Cheng L, Liu W, Wang K. Predictive classification of lung cancer pathological based on PET/CT radiomics.
Jpn J Radiol 2025;
43:1007-1024. [PMID:
39998736 DOI:
10.1007/s11604-025-01742-4]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVES
To develop and validate a combined clinical and radiomics model for non-invasive prediction of lung cancer (LC) pathological types (lung adenocarcinoma, lung squamous cell carcinoma, and small cell lung cancer) based on patients' pre-treatment FDG PET/CT images and clinical data, as a complementary tool to aid in the diagnosis of LC pathological histological classification.
METHODS
In total, 896 patients with pathological confirmation of lung cancer were part of this retrospective study. The training and test groups included 819 patients who underwent scanning using scanner 1. The independent validation group included 77 patients who using scanner 2. The optimal features were retained by least absolute shrinkage and selection operator algorithm dimensionality reduction screening of the collected radiomics features, clinical parameters, and PET metabolic parameters. Five models were established to predict the lung cancer pathological types by the k-nearest neighbor classification (KNN) algorithm. The performance of the prediction model was assessed by calculating the area under the curve (AUC) from the receiver operator characteristic curve (ROC).
RESULTS
Of all five predictive models (the PET-only radiomics model, the CT-only radiomics model, the PET/CT radiomics model, the clinical-only model and the combined clinical and PET/CT radiomics model), the clinical combined PET/CT radiomics model exhibited best performance. The macro-AUC for the training, test and independent validation groups were 0.974, 0.931, 0.960, the micro-AUC were 0.976, 0.940, 0.970, and the accuracy were 0.963, 0.914, and 0.961, respectively.
CONCLUSIONS
Our model combined radiomics and clinical data and showed higher performance in non-invasively predicting the LC pathological types, which suggesting that PET/CT radiomics may be a promising technique for predicting LC histopathology.
Collapse