1
|
Ganesan R, Thirumurugan D, Vinayagam S, Kim DJ, Suk KT, Iyer M, Yadav MK, HariKrishnaReddy D, Parkash J, Wander A, Vellingiri B. A critical review of microbiome-derived metabolic functions and translational research in liver diseases. Front Cell Infect Microbiol 2025; 15:1488874. [PMID: 40066068 PMCID: PMC11891185 DOI: 10.3389/fcimb.2025.1488874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/31/2025] [Indexed: 05/13/2025] Open
Abstract
Significant changes in gut microbial composition are associated with chronic liver disease. Using preclinical models, it has been demonstrated that ethanol/alcohol-induced liver disease is transmissible through fecal microbiota transplantation (FMT). So, the survival rate of people with severe alcoholic hepatitis got better, which suggests that changes in the makeup and function of gut microbiota play a role in metabolic liver disease. The leaky intestinal barrier plays a major role in influencing metabolic-related liver disease development through the gut microbiota. As a result, viable bacteria and microbial products can be transported to the liver, causing inflammation, contributing to hepatocyte death, and causing the fibrotic response. As metabolic-related liver disease starts and gets worse, gut dysbiosis is linked to changes in the immune system, the bile acid composition, and the metabolic function of the microbiota in the gut. Metabolic-related liver disease, as well as its self-perpetuation, will be demonstrated using data from preclinical and human studies. Further, we summarize how untargeted treatment approaches affect the gut microbiota in metabolic-related liver disease, including dietary changes, probiotics, antibiotics, and FMT. It discusses how targeted therapies can improve liver disease in various areas. These approaches may improve metabolic-related liver disease treatment options.
Collapse
Affiliation(s)
- Raja Ganesan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Saranya Vinayagam
- Department of Bioscience, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Dong Joon Kim
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Mahalaxmi Iyer
- Department of Microbiology, School of Basic Science, Central University of Punjab, Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Science, Central University of Punjab, Bathinda, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Jyoti Parkash
- Neurochemistry and Neuroendocrinology Lab, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Arvinder Wander
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
2
|
Dai J, Song J, Chen X, Ding F, Ding Y, Ma L, Zhang L. 1,25(OH) 2D 3-treated mouse bone marrow-derived dendritic cells alleviate autoimmune hepatitis in mice by improving TFR/TFH imbalance. Immunopharmacol Immunotoxicol 2024:1-9. [PMID: 39604017 DOI: 10.1080/08923973.2024.2435314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE Autoimmune hepatitis (AIH) is a chronic progressive autoimmune disease with unclear etiology. As a bioactive metabolite of Vitamin D, 1,25(OH)2D3 can stimulate the production of tolerogenic dendritic cells (DCs) that overexpress programmed cell death ligand 1 (PD-L1). Although these cells have been shown to play a part in autoimmune diseases, their role in AIH remains unclear. METHODS This study aimed to investigate the potential effect of 1,25(OH)2D3-modulated DCs (PD-L1high VD3-DCs) in a murine model of experimental autoimmune hepatitis (EAH). RESULTS Our results showed that intravenous injection of PD-L1high VD3-DCs significantly attenuated liver injury and EAH severity in mice. In addition, PD-L1high VD3-DC infusion improved the imbalance between splenic regulatory T cells (TFR) and follicular helper T (TFH) cells in EAH mice by increasing the number of TFR cells and restoring TFR/TFH ratio. Also, PD-L1high VD3-DC infusion selectively promoted TFR expansion and inhibited TFH differentiation. Furthermore, PD-L1high VD3-DC infusion increased TGF-β and IL-10 production, inhibited IL-21 secretion, upregulated key TFH transcriptional factors, and reduced the levels of serum immunoglobulins in EAH mice. CONCLUSIONS To sum up, PD-L1high VD3-DC infusion could control EAH progression in mice by regulating TFR/TFH imbalance, indicating PD-L1high VD3-DC infusion might be a promising therapeutic approach for AIH treatment.
Collapse
Affiliation(s)
- Juan Dai
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jianguo Song
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China
| | - Xueping Chen
- Department of Gastroenterology, The People's Hospital of Wuqia, Xin Jiang, China
| | - Fei Ding
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yanbo Ding
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Liang Ma
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Liwen Zhang
- Department of Pediatrics, the Second People's Hospital of Changzhou, the Third Affiliate Hospital of Nanjing medical University, Changzhou, Jiangsu, China
| |
Collapse
|
3
|
Chen Z, Zheng Q, Wang Y, An X, Yirga SK, Lin D, Shi Q, Huang M, Chen Y. CXCL13/CXCR5 axis facilitates TFH expansion and correlates with disease severity in adults with immune thrombocytopenia. Thromb Res 2024; 244:109196. [PMID: 39454362 DOI: 10.1016/j.thromres.2024.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder defined by a diminished platelet count. ITP pathogenesis involves intricate changes to both cellular and humoral immunity. The pivotal roles of follicular helper T (TFH) cells in the maturations of B cells and the production of antibodies are well-established. However, the specific role of TFH to the immunopathogenesis of ITP remain incompletely understood. This study aimed to clarify the association of CXCL13/CXCR5 axis with TFH in adults with ITP. METHODS A total of 97 ITP patients and 41 healthy controls were enrolled. CD4+CXCR5+ TFH, CD4+CXCR5+PD-1+ TFH, CD4+CXCR5+Foxp3+ follicular regulatory T cells (TFR), and desialylated platelets in peripheral blood were measured by flow cytometry. Plasma cytokines were assessed by enzyme-linked immunosorbent assay. CD4+ T cells cocultured with chemokine CXCL13 in vitro was performed for the measurement of TFH proliferation. Intracellular production of reactive oxygen species (ROS) was examined by dichlorodihydrofluorescein diacetate (DCFH-DA) probe staining. RESULTS We observed a significant increase in circulating TFH and a marked decrease in circulating TFR in the entire ITP cohort. The ratio of TFH/TFR was elevated, accompanied by heightened levels of platelet desialylation, cytokines BAFF, HMGB1, and IL-21, while levels of IL-10 were downregulated in adults with ITP. Notably, patients with ITP exhibiting platelet count below 50 × 109/L had dramatically elevated levels in both chemokine CXCL13 and its receptor CXCR5+ TFH compared to those with platelet count above 100 × 109/L. High frequencies of TFH correlated with poor therapeutic response. Furthermore, in vitro CD4+ T cell proliferation assay demonstrated a CXCL13 dose-dependent increase in the frequencies in both CD4+CXCR5+ TFH and CD4+CXCR5+PD-1+ TFH from ITP patients. Intriguingly, DCFH-DA assay illustrated a significant enhancement in intracellular ROS generation in CXCR5+ T cell subsets, especially in CD4+CXCR5+PD-1+ TFH from 4 patients with ITP. CONCLUSIONS These results underscore the pivotal role of CXCL13/CXCR5 axis-drived TFH expansion in the pathogenesis of ITP, providing a potential disease severity biomarker.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yali Wang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China; School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian, China
| | - Xing An
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China; School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian, China
| | - Shimuye Kalayu Yirga
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Donghong Lin
- Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Meijuan Huang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China; School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
4
|
Meng Z, Yang Y. Advances in the Treatment of Autoimmune Hepatitis. J Clin Transl Hepatol 2024; 12:878-885. [PMID: 39440223 PMCID: PMC11491506 DOI: 10.14218/jcth.2024.00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic, progressive inflammatory liver disease caused by autoimmune reactions, with an unknown etiology. If left untreated, it can progress to cirrhosis, liver failure, or even death. While most patients respond well to first-line treatments, a significant number experience poor responses or intolerance, requiring the use of second- or third-line therapies. Ongoing research into the pathogenesis of AIH is leading to the development of novel therapeutic approaches. This review summarized recent advancements in the treatment of AIH both domestically and internationally.
Collapse
Affiliation(s)
- Zelu Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Seida I, Al Shawaf M, Mahroum N. Fecal microbiota transplantation in autoimmune diseases - An extensive paper on a pathogenetic therapy. Autoimmun Rev 2024; 23:103541. [PMID: 38593970 DOI: 10.1016/j.autrev.2024.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The role of infections in the pathogenesis of autoimmune diseases has long been recognized and reported. In addition to infectious agents, the internal composition of the "friendly" living bacteria, (microbiome) and its correlation to immune balance and dysregulation have drawn the attention of researchers for decades. Nevertheless, only recently, scientific papers regarding the potential role of transferring microbiome from healthy donor subjects to patients with autoimmune diseases has been proposed. Fecal microbiota transplantation or FMT, carries the logic of transferring microorganisms responsible for immune balance from healthy donors to individuals with immune dysregulation or more accurately for our paper, autoimmune diseases. Viewing the microbiome as a pathogenetic player allows us to consider FMT as a pathogenetic-based treatment. Promising results alongside improved outcomes have been demonstrated in patients with different autoimmune diseases following FMT. Therefore, in our current extensive review, we aimed to highlight the implication of FMT in various autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid and liver diseases, systemic lupus erythematosus, and type 1 diabetes mellitus, among others. Presenting all the aspects of FMT in more than 12 autoimmune diseases in one paper, to the best of our knowledge, is the first time presented in medical literature. Viewing FMT as such could contribute to better understanding and newer application of the model in the therapy of autoimmune diseases, indeed.
Collapse
Affiliation(s)
- Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Maisam Al Shawaf
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|