Raimi MA, Rajee AO, Gber TE, Arikpo TO, Pembere AMS, Louis H. Cobalt group transition metals (TM: Co, Rh, Ir) coordination of S-doped porphyrins (TM_S@PPR) as sensors for molecular SO
2 gas adsorption: a DFT and QTAIM study.
J Mol Model 2024;
30:85. [PMID:
38411800 DOI:
10.1007/s00894-024-05879-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
CONTEXT
The intricate challenges posed by SO2 gas underscore the imperative for meticulous monitoring and detection due to its adverse effects on health, the environment, and equipment integrity. Hence, this research endeavors to delve deeply into the intricate realm of transition-metals functionalized sulfur-doped porphyrins (S@PPR) surfaces through a comprehensive computational study. The electronic properties revealed that upon adsorption, Ir_S@PPR surface reflects the least energy gap of 0.109 eV at the O-site of adsorptions, indicating an increase in electrical conductivity which is a better adsorption trait. Owing to the negative adsorption energy observed, the adsorption behavior is described as chemisorption, with the greatest adsorption energy of - 10.306 eV for Ir_S@PPR surface at the S-site of adsorption. Based on the mechanistic attributes, iridium-functionalized S@PPR surface is a promising detecting material towards the sensing of SO2 gas. This report will provide useful insight for experimental researchers in selecting and engineering materials to be used as detectors for SO2 gas pollutant.
METHOD
All theoretical investigations were carried out using density functional theory (DFT), calculated at PW6B95-D3/GenECP/Def2svp/LanL2DZ computational method.
Collapse