1
|
Laffon M, Domont J, Hano C, Lanoue A, Giglioli-Guivarc'h N. Unlocking specialized metabolism in medicinal plant biotechnology through plant-microbiome interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102620. [PMID: 39241282 DOI: 10.1016/j.pbi.2024.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Medicinal plants produce specialized metabolites (SM) that are used as drugs. However, due to low yields of field cultivation and the increasing market demand, this production method often failed to meet supply needs. Biotechnological alternatives, such as in vitro plant cultures, offer promising solutions. Nonetheless, SM production in these systems remains too low for industrial exploitation, necessitating an elicitation step to induce the plant defense metabolism. Traditional elicitation methods mimic environmental conditions that trigger plant-specialized metabolism, often with an artificial signal that mimics microbial interaction. Recent insights into the essential role of the plant microbiota, provides new opportunities for elicitation strategies by microbial coculture in a controlled environment. The successful co-culture of in vitro medicinal plants with synthetic microbial communities could enable sustainable production of pharmaceutically important SM.
Collapse
Affiliation(s)
- Malorie Laffon
- Biomolecules and Biotechnologies Végétales, EA2106, University of Tours, 37200, Tours, France; Evonik Advanced Botanicals, 220 Rue Henri Potez, 37210, Parçay-Meslay, France
| | - Justine Domont
- Biomolecules and Biotechnologies Végétales, EA2106, University of Tours, 37200, Tours, France
| | - Christophe Hano
- Institut de Chimie Organique et Analytique, Université d'Orléans-CNRS, UMR 7311 BP 6759, CEDEX 2, Orléans 45067, France
| | - Arnaud Lanoue
- Biomolecules and Biotechnologies Végétales, EA2106, University of Tours, 37200, Tours, France
| | | |
Collapse
|
2
|
Jain D, Meena M, Janmeda P, Seth CS, Arora J. Analysis of Quantitative Phytochemical Content and Antioxidant Activity of Leaf, Stem, and Bark of Gymnosporia senegalensis (Lam.) Loes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1425. [PMID: 38891234 PMCID: PMC11174610 DOI: 10.3390/plants13111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
To the best of our knowledge, there was no prior report providing valuable preliminary data through a demonstration of the quantitative phytochemical and antioxidant activity of Gymnosporia senegalensis. The total contents of phenols, flavonoid, flavanol, tannin, and saponin were evaluated from different fractions extracted from the leaf, stem, and bark of G. senegalensis by using standards such as gallic acid, quercetin, rutin, tannic acid, and saponin quillaja. The antioxidant potential was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide scavenging (H2O2), superoxide anion radical scavenging, metal chelating ferrous ion, ferric reducing antioxidant power (FRAP), and total antioxidant capacity (TAC). Data were subjected to half-inhibitory concentration (IC50) and one-way analysis of variance (ANOVA) at p < 0.05 as a significant value. The total phenol content was found to be highest in the chloroform extract of stem at 97.7 ± 0.02 mg GAE/g. The total flavonoid and flavonol contents in the aqueous extract were 97.1 ± 0.03 mg QE/g and 96.7 ± 0.07 mg RE/g, respectively. The total tannin content in the ethyl acetate extract of leaf was 97.5 ± 0.01 mg TAE/g, and the total saponin content in the methanol extract of stem was 79.1 ± 0.06 mg SQE/g. The antioxidant analysis indicated that IC50 and percentage (%) inhibition were dose-dependent and showed the highest antioxidant activity (40.9 ± 0.9 µg/mL) in methanol extract of leaf for DPPH, (88.8 ± 1.12 µg/mL) in the chloroform extract of stem for H2O2, (43.9 ± 0.15 µg/mL) in the aqueous extract of bark for superoxide anion radical scavenging activity, (26.9 ± 0.11 µg/mL) in the chloroform extract of leaf for the metal chelating ferrous ion activity, (7.55 ± 0.10 mg/mL) in the benzene extract of leaf for FRAP, and (2.97 ± 0.01 mg/mL) in the methanol extract of bark for TAC. These results show that G. senegalensis has great potential in antioxidant activities. The isolation and characterization of specific bioactive compounds and the in vivo applicability of such activity await further extensive studies for drug discovery and development.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | | | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India;
| |
Collapse
|
3
|
Goyal T, Mukherjee A, Chouhan GK, Gaurav AK, Kumar D, Abeysinghe S, Verma JP. Impact of bacterial volatiles on the plant growth attributes and defense mechanism of rice seedling. Heliyon 2024; 10:e29692. [PMID: 38660266 PMCID: PMC11040113 DOI: 10.1016/j.heliyon.2024.e29692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Rice is a major dietary element for about two billion people worldwide and it faces numerous biotic and abiotic stress for its cultivation. Rice blast disease caused by Magnaporthe oryzae reduce up to 30 % rice yield. Overuse of synthetic chemicals raises concerns about health and environment; so, there is an urgent need to explore innovative sustainable strategies for crop productivity. The main aim of this study is to explore the impact of bacterial volatiles (BVCs) on seedling growth and defense mechanisms of rice under in-vitro condition. On the basis of plant growth promoting properties, six bacterial strains were selected out of ninety-one isolated strains for this study; Pantoea dispersa BHUJPVR01, Enterobacter cloacae BHUJPVR02, Enterobacter sp. BHUJPVR12, Priestia aryabhattai BHUJPVR13, Pseudomonas sp. BHUJPVWRO5 and Staphylococcus sp. BHUJPVWLE7. Through the emission of bacterial volatiles compounds (BVCs), Enterobacter sp., P. dispersa and P. aryabhattai significantly reduces the growth of rice blast fungus Magnaporthe oryzae by 69.20 %, 66.15 % and 62.31 % respectively. Treatment of rice seedlings with BVCs exhibited significant enhancement in defence enzyme levels, including guaiacol peroxidase, polyphenol oxidase, total polyphenols, and total flavonoids by a maximum of up to 24 %, 48 %, 116 % and 80 %, respectively. Furthermore, BVCs effectively promote shoot height, root height, and root counts of rice. All BVCs treated plant showed a significant increase in shoot height. P. dispersa treated plants showed the highest increase of 60 % shoot and 110 % root length, respectively. Root counts increased up to 30% in plants treated with E. cloacae and Staphylococcus sp. The BVCs can be used as a sustainable approach for enhancing plant growth attributes, productivity and defence mechanism of rice plant under biotic and abiotic stresses.
Collapse
Affiliation(s)
- Tushar Goyal
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arpan Mukherjee
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gowardhan Kumar Chouhan
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anand Kumar Gaurav
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Deepak Kumar
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saman Abeysinghe
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
| | - Jay Prakash Verma
- Plant Microbe Interaction Lab, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|