1
|
Hassan HM, Hassan R, Elmagzoub RM, Al-Emam A, Kossenas K, Abdel-Samea AS, Khalifa HO, Akocak S, Bräse S, Hashem H. From Infection to Tumor: Exploring the Therapeutic Potential of Ciprofloxacin Derivatives as Anticancer Agents. Pharmaceuticals (Basel) 2025; 18:72. [PMID: 39861135 PMCID: PMC11768150 DOI: 10.3390/ph18010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Ciprofloxacin, a widely used second-generation fluoroquinolone for treating bacterial infections, has recently shown notable anticancer properties. This review explores progress in developing ciprofloxacin derivatives with anticancer properties, emphasizing key structural changes that improve their therapeutic effectiveness by modifying the basic group at position 7, the carboxylic acid group at position 3, or both. It further investigates the mechanisms by which these derivatives fight cancer, such as inducing apoptosis, arresting the cell cycle, inhibiting topoisomerase I and II, preventing tubulin polymerization, suppressing interleukin 6, blocking thymidine phosphorylase, inhibiting multidrug resistance proteins, and hindering angiogenesis. Additionally, it outlines their future directions, such as enhancing their efficacy, selectivity, and investigating potential synergy with other chemotherapeutic agents, offering a promising avenue for developing new therapies for cancer.
Collapse
Affiliation(s)
- Hesham M. Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut 71111, Egypt
| | - Roket Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Ranya Mohammed Elmagzoub
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 73311, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Konstantinos Kossenas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, P.O. Box 24005, 21 Ilia Papakyriakou, 2414 Engomi, CY-1700 Nicosia, Cyprus
| | - Ahmed S. Abdel-Samea
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Hazim O. Khalifa
- Department of Pharmacology, Faculty of Veterinary Medicinea, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Türkiye
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
2
|
Alshahateet SF, Altarawneh RM, Al-Trawneh SA, Al-Saraireh YM, Al-Tawarh WM, Abuawad KR, Abuhalaweh YM, Zerrouk M, Mansour AA, Salghi R, Hammouti B, Merzouki M, Sabbahi R, Rhazi L, Alanazi MM, Azzaoui K. Cheminformatics-based design and biomedical applications of a new Hydroxyphenylcalix[4] resorcinarene as anti-cancer agent. Sci Rep 2024; 14:30460. [PMID: 39672820 PMCID: PMC11645408 DOI: 10.1038/s41598-024-82115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
The distinct conformational characteristics, functionality, affordability, low toxicity, and usefulness make calixarene-based compounds a promising treatment option for cancer. The aim of the present study is to synthesize a new calixarene-based compound and assess of its anticancer potential on some human cancer cells. The synthesized C-4-Hydroxyphenylcalix[4] resorcinarene (HPCR) was characterized by several spectroscopic techniques such as 1HNMR, 13CNMR, and X-ray crystallographic analysis to confirm its purity and identity. IC50 values were identified for cancer cell lines (U-87, MCF-7, A549) and human dermal fibroblasts cell line (HDF) after treatment with HPCR and the standard drug Cisplatin. A significant selective growth inhibitory activity against U-87 and A549 cell lines was obtained at an HPCR concentration of 100 μM. The MOE docking module (version 2015) was utilized to assess the extent of inhibition for HPCR compound against four cancer-related proteins (3RJ3, 7AXD, 6DUK, and 1CGL).
Collapse
Affiliation(s)
- S F Alshahateet
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan.
| | - R M Altarawneh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - S A Al-Trawneh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Y M Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - W M Al-Tawarh
- Department of Chemistry, Faculty of Science, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - K R Abuawad
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - Y M Abuhalaweh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan
| | - M Zerrouk
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, 30000, Fez, Morocco
| | - A Ait Mansour
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, P.O. Box 1136, 80000, Agadir, Morocco
| | - R Salghi
- Laboratory of Applied Chemistry and Environment, ENSA, University Ibn Zohr, P.O. Box 1136, 80000, Agadir, Morocco
| | - B Hammouti
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, UEMF, 30030, Fez, Morocco
- Laboratory of Industrial Engineering, Energy and the Environment (LI3E) SUPMTI, Rabat, Morocco
| | - M Merzouki
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Mohammed 1st University, Oujda, Morocco
| | - R Sabbahi
- Research Team in Science and Technology, Higher School of Technology, Ibn Zohr University, P.O. Box 3007, Laayoune, Morocco
| | - L Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - K Azzaoui
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohammed Ben Abdellah University, 30000, Fez, Morocco
| |
Collapse
|
3
|
Ali DME, Aziz HA, Bräse S, Al Bahir A, Alkhammash A, Abuo-Rahma GEDA, Elshamsy AM, Hashem H, Abdelmagid WM. Unveiling the Anticancer Potential of a New Ciprofloxacin-Chalcone Hybrid as an Inhibitor of Topoisomerases I & II and Apoptotic Inducer. Molecules 2024; 29:5382. [PMID: 39598770 PMCID: PMC11596536 DOI: 10.3390/molecules29225382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The current study has yielded promising results in the evaluation of a new ciprofloxacin-chalcone hybrid (CP derivative) for its anticancer activity as potential Topoisomerases (Topo) I and II inhibitors. The in vitro results showed that the CP derivative significantly suppressed the growth of HCT-116 and LOX IMVI cells, with IC50 values of 5.0 μM and 1.3 μM, respectively, outperforming Staurosporine, which had IC50 values of 8.4 μM and 1.6 μM, respectively. Flow cytometry analysis revealed that the new CP derivative triggered apoptosis and cell cycle arrest at the G2/M phase, associated with the up-regulation of pro-apoptotic genes (Bax and Caspase 9) and downregulation of the anti-apoptotic gene (Bcl-2). Further investigations showed that the CP derivative inhibited Topo I and II enzymes, as expected molecular targets; docking studies further supported its dual inhibitory action on Topo I and II. These findings suggest that the ciprofloxacin-chalcone hybrid could be a promising lead compound for developing new anticancer therapy.
Collapse
Affiliation(s)
| | - Hossameldin A. Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Areej Al Bahir
- Chemistry Department, Faculty of Science, King Khalid University, Abha 64734, Saudi Arabia
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Gamal El-Din A. Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City 61768, Egypt
| | - Ali M. Elshamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City 61768, Egypt
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Walid M. Abdelmagid
- Medicinal Chemistry and Drug Discovery Research Centre, Swenam College, 210-6125 Sussex Avenue, Burnaby, BC V5H 4G1, Canada;
| |
Collapse
|
4
|
Zieba A, Pindjakova D, Latocha M, Plonka-Czerw J, Kusmierz D, Cizek A, Jampilek J. Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides. Molecules 2024; 29:4044. [PMID: 39274892 PMCID: PMC11396667 DOI: 10.3390/molecules29174044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3a-f and 6a-f were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and 1,2,3-triazole systems 7a-h were obtained by reactions of acetylene derivatives of quinoline-5-sulfonamide 6a-d with organic azides. The structures of the obtained compounds were confirmed by 1H and 13C NMR spectroscopy and HR-MS spectrometry. The obtained quinoline derivatives 3a-f and 6a-f and 1,2,3-triazole derivatives 7a-h were tested for their anticancer and antimicrobial activity. Human amelanotic melanoma cells (C-32), human breast adenocarcinoma cells (MDA-MB-231), and human lung adenocarcinoma cells (A549) were selected as tested cancer lines, while cytotoxicity was investigated on normal human dermal fibroblasts (HFF-1). All the compounds were also tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis. Only the acetylene derivatives of 8-hydroxyquinoline-5-sulfonamide 3a-f were shown to be biologically active, and 8-hydroxy-N-methyl-N-(prop-2-yn-1-yl)quinoline-5-sulfonamide (3c) showed the highest activity against all three cancer lines and MRSA isolates. Its efficacies were comparable to those of cisplatin/doxorubicin and oxacillin/ciprofloxacin. In the non-cancer HFF-1 line, the compound showed no toxicity up to an IC50 of 100 µM. In additional tests, compound 3c decreased the expression of H3, increased the transcriptional activity of cell cycle regulators (P53 and P21 proteins), and altered the expression of BCL-2 and BAX genes in all cancer lines. The unsubstituted phenolic group at position 8 of the quinoline is the key structural fragment necessary for biological activity.
Collapse
Affiliation(s)
- Andrzej Zieba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Dominika Pindjakova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic
| | - Malgorzata Latocha
- Department of Cell Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jednosci 9, 41-200 Sosnowiec, Poland
| | - Justyna Plonka-Czerw
- Department of Cell Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jednosci 9, 41-200 Sosnowiec, Poland
| | - Dariusz Kusmierz
- Department of Cell Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jednosci 9, 41-200 Sosnowiec, Poland
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic
| | - Josef Jampilek
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| |
Collapse
|
5
|
Ellouz M, Ihammi A, Baraich A, Farihi A, Addichi D, Loughmari S, Sebbar NK, Bouhrim M, A. Mothana R, M. Noman O, Eto B, Chigr F, Chigr M. Synthesis and In Silico Analysis of New Polyheterocyclic Molecules Derived from [1,4]-Benzoxazin-3-one and Their Inhibitory Effect against Pancreatic α-Amylase and Intestinal α-Glucosidase. Molecules 2024; 29:3086. [PMID: 38999038 PMCID: PMC11243342 DOI: 10.3390/molecules29133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study focuses on synthesizing a new series of isoxazolinyl-1,2,3-triazolyl-[1,4]-benzoxazin-3-one derivatives 5a-5o. The synthesis method involves a double 1,3-dipolar cycloaddition reaction following a "click chemistry" approach, starting from the respective [1,4]-benzoxazin-3-ones. Additionally, the study aims to evaluate the antidiabetic potential of these newly synthesized compounds through in silico methods. This synthesis approach allows for the combination of three heterocyclic components: [1,4]-benzoxazin-3-one, 1,2,3-triazole, and isoxazoline, known for their diverse biological activities. The synthesis procedure involved a two-step process. Firstly, a 1,3-dipolar cycloaddition reaction was performed involving the propargylic moiety linked to the [1,4]-benzoxazin-3-one and the allylic azide. Secondly, a second cycloaddition reaction was conducted using the product from the first step, containing the allylic part and an oxime. The synthesized compounds were thoroughly characterized using spectroscopic methods, including 1H NMR, 13C NMR, DEPT-135, and IR. This molecular docking method revealed a promising antidiabetic potential of the synthesized compounds, particularly against two key diabetes-related enzymes: pancreatic α-amylase, with the two synthetic molecules 5a and 5o showing the highest affinity values of 9.2 and 9.1 kcal/mol, respectively, and intestinal α-glucosidase, with the two synthetic molecules 5n and 5e showing the highest affinity values of -9.9 and -9.6 kcal/mol, respectively. Indeed, the synthesized compounds have shown significant potential as antidiabetic agents, as indicated by molecular docking studies against the enzymes α-amylase and α-glucosidase. Additionally, ADME analyses have revealed that all the synthetic compounds examined in our study demonstrate high intestinal absorption, meet Lipinski's criteria, and fall within the required range for oral bioavailability, indicating their potential suitability for oral drug development.
Collapse
Affiliation(s)
- Mohamed Ellouz
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Aziz Ihammi
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, P.O. Box 717, Oujda 60000, Morocco;
| | - Ayoub Farihi
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra 14000, Morocco;
- Oriental Center for Water and Environmental Sciences and Technologies (COSTE), Mohammed Premier University, Oujda 60000, Morocco
| | - Darifa Addichi
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Saliha Loughmari
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Nada Kheira Sebbar
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.)
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, P.O. Box 83, F-59000 Lille, France;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.A.M.); (O.M.N.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.A.M.); (O.M.N.)
| | - Bruno Eto
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, P.O. Box 83, F-59000 Lille, France;
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.)
| | - Mohammed Chigr
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| |
Collapse
|
6
|
Sadineni K, Reddy Basireddy S, Rao Allaka T, Yatam S, Bhoomandla S, Muvvala V, Babu Haridasyam S. Design, Synthesis and In vitro Antitubercular Effect of New Chalcone Derivatives Coupled with 1,2,3-Triazoles: A Computational Docking Techniques. Chem Biodivers 2024; 21:e202400389. [PMID: 38457745 DOI: 10.1002/cbdv.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 μg/mL, compared to Streptomycin [MIC=5.01 μg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).
Collapse
Affiliation(s)
- Kumaraswamy Sadineni
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
| | - Sravanthi Reddy Basireddy
- Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad, Telangana-500043, India
- Department of Chemistry, GITAM Institute of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana-500085, India
| | - Satyanarayana Yatam
- A1Biochem Labs (India) Pvt LTD, Pragathi Nagar, Kukatpally, Hyderabad-500072, Telangana, India
| | - Srinu Bhoomandla
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
- Department of Chemistry, Geethanjali College of Engineering and Technology (Autonomous), Cheeryal, Medchal-501301, Telangana, India
| | - Venkatanaryana Muvvala
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
| |
Collapse
|
7
|
Khwaza V, Mlala S, Aderibigbe BA. Advancements in Synthetic Strategies and Biological Effects of Ciprofloxacin Derivatives: A Review. Int J Mol Sci 2024; 25:4919. [PMID: 38732134 PMCID: PMC11084713 DOI: 10.3390/ijms25094919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| |
Collapse
|