1
|
Guo X, Zhao Z, Gao X, Fu H, Hu Z, Zhang X, Dong Y. Study on the adsorption performance of fly ash loaded on nano-FeS for chromium-containing wastewater treatment. Heliyon 2024; 10:e34661. [PMID: 39130456 PMCID: PMC11315189 DOI: 10.1016/j.heliyon.2024.e34661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
In view of the problems caused by chromium-containing wastewater, such as environmental pollution, biological toxicity, and human health risks. Based on fly ash adsorption and nano-FeS reduction characteristics, fly ash loaded nano-FeS composite (nFeS-FA) was synthesized using mineral supported modification technology and ultrasonic precipitation method. The effect of adsorbent dosage, initial pH, contact time, and initial concentration of the solution on the adsorption of Cr(VI) and total Cr by nFeS-FA was investigated. The characteristics of Cr(VI) and total Cr adsorption by nFeS-FA were studied using adsorption isotherms, adsorption kinetics principles, as well as XRD, TEM, SEM-EDS, and BET analysis. The results demonstrated that under the conditions of nFeS-FA of 8 g/L, initial pH of 4, contact time of 150 min, and initial concentration of the solution at 100 mg/L, nFeS-FA achieved removal efficiency of 87.85 % for Cr(VI) and 71.77 % for total Cr. The adsorption of Cr(VI) and total Cr by nFeS-FA followed the Langmuir model and pseudo-second-order kinetic model, indicating monolayer adsorption with chemical adsorption as the dominant mechanism. XRD, TEM, SEM-EDS, and BET revealed that the flaky nano-FeS was uniformly distributed on the surface of fly ash, exhibiting good dispersion and thereby increasing the specific surface area. During the adsorption experiments, nFeS-FA reacted with Cr(VI), and the generated Fe3+ mainly existed as FeOOH precipitation, while S2- reacted with Cr(III) to produce Cr2S3 precipitation. Therefore, nFeS-FA exhibited excellent adsorption performance towards Cr(VI) and total Cr. It can serve as a technological reference for the remediation of heavy metal chromium pollution in the field of water treatment.
Collapse
Affiliation(s)
- Xuying Guo
- College of Science, Liaoning Technical University, Fuxin, 123000, Liaoning, China
- College of Mining, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| | - Zilong Zhao
- College of Mining, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| | - Xinle Gao
- College of Mining, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| | - Honglei Fu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| | - Zhiyong Hu
- College of Mining, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| | - Xiaoyue Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| | - Yanrong Dong
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| |
Collapse
|
2
|
Saad EM, Abd-Elhafiz MF, Ahmed EM, Markeb AA. Hexavalent chromium ion removal from wastewater using novel nanocomposite based on the impregnation of zero-valent iron nanoparticles into polyurethane foam. Sci Rep 2024; 14:5387. [PMID: 38443423 PMCID: PMC10914806 DOI: 10.1038/s41598-024-55803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
In this study, we developed a novel nanocomposite, polyurethane foam impregnated with zero-valent iron nanoparticles (PU@nZVI), for the effective removal of chromium(VI) from various water sources. The characterization of nanocomposite (PU@nZVI) was performed by XRD, SEM-EDS, TEM and FT-IR techniques. Using the response surface methodology, we optimized the removal conditions, achieving an optimal pH of 2 and a dose of 0.5 g/L. The PU@nZVI demonstrated an excellent maximum adsorption capacity of 600.0 mg/g for Cr6+. The adsorption kinetics and isotherms were best described by the pseudo-second-order model and the Freundlich isotherm, respectively. Significantly, the nanocomposite removed 99.98% of Cr6+ from tap water, 96.81% from industrial effluent, and 94.57% from treated sewage wastewater. Furthermore, the PU@nZVI maintained its efficiency over five adsorption-desorption cycles, highlighting its reusability. These results suggest that the PU@nZVI nanocomposite is a highly efficient and sustainable option for chromium(VI) removal in water treatment applications.
Collapse
Affiliation(s)
- Eman M Saad
- Chemistry Department, Faculty of Science, Suez University, Suez, Egypt.
| | | | - Eman M Ahmed
- Chemistry Department, Faculty of Engineering, South Vally University, South Vally, Qena, Egypt
| | - Ahmad Abo Markeb
- Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|