1
|
Khoo V, Ng SF, Haw CY, Ong WJ. Additive Manufacturing: A Paradigm Shift in Revolutionizing Catalysis with 3D Printed Photocatalysts and Electrocatalysts Toward Environmental Sustainability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401278. [PMID: 38634520 DOI: 10.1002/smll.202401278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Semiconductor-based materials utilized in photocatalysts and electrocatalysts present a sophisticated solution for efficient solar energy utilization and bias control, a field extensively explored for its potential in sustainable energy and environmental management. Recently, 3D printing has emerged as a transformative technology, offering rapid, cost-efficient, and highly customizable approaches to designing photocatalysts and electrocatalysts with precise structural control and tailored substrates. The adaptability and precision of printing facilitate seamless integration, loading, and blending of diverse photo(electro)catalytic materials during the printing process, significantly reducing material loss compared to traditional methods. Despite the evident advantages of 3D printing, a comprehensive compendium delineating its application in the realm of photocatalysis and electrocatalysis is conspicuously absent. This paper initiates by delving into the fundamental principles and mechanisms underpinning photocatalysts electrocatalysts and 3D printing. Subsequently, an exhaustive overview of the latest 3D printing techniques, underscoring their pivotal role in shaping the landscape of photocatalysts and electrocatalysts for energy and environmental applications. Furthermore, the paper examines various methodologies for seamlessly incorporating catalysts into 3D printed substrates, elucidating the consequential effects of catalyst deposition on catalytic properties. Finally, the paper thoroughly discusses the challenges that necessitate focused attention and resolution for future advancements in this domain.
Collapse
Affiliation(s)
- Valerine Khoo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Choon-Yian Haw
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|