1
|
Ogunro OB. An updated and comprehensive review of the health benefits and pharmacological activities of hesperidin. Biochem Biophys Res Commun 2025; 772:151974. [PMID: 40414011 DOI: 10.1016/j.bbrc.2025.151974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVES This review aims to comprehensively assess the health benefits and pharmacological activities of hesperidin, a flavonoid commonly found in citrus fruits. It consolidates recent research findings to provide insights into hesperidin's diverse health-promoting effects. KEY FINDINGS Hesperidin has gained significant attention recently for its notable pharmacological activities and potential health benefits. Studies reveal its antioxidant properties, protecting cells from oxidative damage, and its anti-inflammatory effects, inhibiting pro-inflammatory cytokines and enzymes. Also, hesperidin shows promise in cardiovascular health by reducing blood pressure and cholesterol levels and enhancing endothelial function. It also exhibits anticancer potential by hindering cell proliferation, inducing apoptosis, and suppressing tumour growth. Moreover, hesperidin demonstrates neuroprotective effects, potentially mitigating neuroinflammation and oxidative stress associated with neurodegenerative diseases. Furthermore, it displays beneficial effects in metabolic disorders such as diabetes, obesity, and fatty liver disease by influencing glucose metabolism, lipid profile, and insulin sensitivity. SUMMARY Hesperidin exhibits a wide range of health benefits and pharmacological activities, making it a promising candidate for therapeutic interventions in various diseases. Its antioxidant, anti-inflammatory, cardiovascular, anticancer, neuroprotective, and metabolic effects underscore its potential as a valuable natural compound for promoting health and preventing chronic diseases.
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Drug Discovery, Toxicology, and Pharmacology Research Laboratory, Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria.
| |
Collapse
|
2
|
Lee YJ, Kim MS. Advances in drug-loaded microspheres for targeted, controlled, and sustained drug delivery: Potential, applications, and future directions. Biomed Pharmacother 2025; 189:118244. [PMID: 40516334 DOI: 10.1016/j.biopha.2025.118244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/23/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025] Open
Abstract
Drug-loaded microspheres are an innovative technology in drug delivery systems (DDS), addressing many limitations of conventional methods. Their ability to enable controlled release, precise targeting, and broad drug compatibility makes them a versatile platform with significant potential in modern medicine. This review explores the unique properties of microspheres, including their biocompatibility, biodegradability, and customizable architecture, positioning them as promising candidates for therapeutic use in cancer, diabetes, and rheumatoid arthritis. These characteristics enhance drug stability and bioavailability while reducing systemic side effects, improving patient outcomes. The key findings discussed in this review highlight critical factors influencing microsphere performance, including material selection, particle size, surface modification, and multi-drug loading strategies. Particularly, the integration of nanoscale materials and the combination of microsphere technology with gene therapy and immunotherapy have shown great potential to improve treatment precision and efficacy. However, challenges such as large-scale production, reproducibility, and optimization of drug release profiles remain significant hurdles. Large-scale manufacturing of microspheres with consistent size, efficient drug loading, and predictable release patterns is technically complex, and optimizing release, especially for drugs with narrow therapeutic windows, requires a deeper understanding of the interactions between drugs and polymers. Future advances in microsphere technology are expected to leverage innovations in nanotechnology, gene therapy, and immunotherapy. These advancements may enable more efficient and personalized treatments for diseases that were previously difficult to treat. The findings presented in this review emphasize the transformative potential of microspheres in revolutionizing drug delivery, offering safer, more effective, and patient-specific therapies.
Collapse
Affiliation(s)
- Ye Jin Lee
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 16499, South Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon 16499, South Korea.
| |
Collapse
|
3
|
Mittal G, A P, Dhali A, Prasad R, S Y, Nurani KM, Găman MA. Plant extracts with antioxidant and hepatoprotective benefits for liver health: A bibliometric analysis of drug delivery systems. World J Gastroenterol 2025; 31:105836. [DOI: 10.3748/wjg.v31.i18.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 04/21/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND The rising global burden of liver diseases, such as non-alcoholic fatty liver disease and liver fibrosis, has necessitated innovative therapeutic approaches. Plant-based therapies, recognized for their anti-inflammatory and antioxidant properties, have shown promising effects. However, poor bioavailability limits their clinical application.
AIM To map global research trends, key contributors, and emerging themes in plant-based therapies combined with advanced drug delivery systems for liver health.
METHODS Using the Scopus database, 645 documents were retrieved and analyzed using bibliometric tools Biblioshiny and VOSviewer. Analysis focused on publication trends, geographical contributions, and advancements in drug delivery technologies, including nanoparticles, liposomes, and polymeric micelles. Metrics such as publication growth rate, authorship collaboration, and thematic clustering were assessed.
RESULTS The dataset spans 43 years (1981-2024), with an annual growth rate of 11.09% in the number of publications. Research output is dominated by China (33%), followed by the United States (24%) and India (18%). Collaborative studies accounted for 24.34% of publications, with an average of 5.81 co-authors per document. Key innovations include nanoparticle encapsulation of curcumin and silymarin, improving bioavailability by up to 85%. Highly cited studies demonstrated the antioxidant, anti-inflammatory, and anti-fibrotic properties of these compounds. For instance, curcumin nanoparticles showed a 70% improvement in solubility, and silymarin liposomal formulations enhanced therapeutic efficiency by 62%. Thematic analysis revealed a transition from basic clinical observations to molecular and pharmacokinetic research, with a focus on oxidative stress mitigation and hepatoprotection.
CONCLUSION This study highlights the growing synergy between plant-based therapies and advanced drug delivery systems, with significant contributions from Asian and Western countries. Future efforts should prioritize clinical trials, standardization of plant extract formulations, and interdisciplinary approaches to maximize therapeutic outcomes. The findings provide a foundation for integrating plant-derived compounds into evidence-based hepatological therapies, addressing critical challenges in bioavailability and safety.
Collapse
Affiliation(s)
- Gaurav Mittal
- MBBS Final Year StudentMahatma Gandhi Institute of Medical Sciences, Maharashtra 442102, India
| | - Prashanth A
- Department of Physiology, Mahatma Gandhi Institute of Medical Sciences, Maharashtra 442102, India
| | - Arkadeep Dhali
- Academic Unit of Gastroenterology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S5 7AU, United Kingdom
| | - Roshan Prasad
- Department of Medicine, Datta Meghe Institute of Higher Education and Research, Sawangi 442107, India
| | - Yogesh S
- Department of Medicine, Madras Medical College, Chennai 600003, India
| | | | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest 022328, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest 010001, Romania
| |
Collapse
|
4
|
Godse S, Zhou L, Sinha N, Mirzahosseini G, Kumar S. PLGA-Encapsulated Elvitegravir and Curcumin Modulates ART Penetration, Oxidative Stress, and Inflammation. Brain Sci 2025; 15:328. [PMID: 40309788 PMCID: PMC12025016 DOI: 10.3390/brainsci15040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: HIV persists in central nervous system (CNS) reservoirs, where infected microglia and macrophages drive neuroinflammation, oxidative stress, and neuronal damage, contributing to HIV-associated neurocognitive disorder (HAND). Nanoparticle-based drug delivery systems, particularly poly(lactic-co-glycolic acid) (PLGA) nanoparticles, offer a promising strategy to improve CNS antiretroviral therapy (ART) delivery. This study aimed to evaluate the efficacy of co-administration of PLGA nanoparticles (NPs) encapsulating elvitegravir (EVG) and curcumin (CUR) in targeting CNS reservoirs, reducing neuroinflammation, and mitigating oxidative stress. Methods: PLGA NPs encapsulating EVG and CUR (PLGA-EVG and PLGA-CUR) were prepared via the nanoprecipitation method. The NPs were characterized for size, zeta potential, and encapsulation efficiency (EE). Their therapeutic efficacy was evaluated in vitro using U1 macrophages and in vivo in Balb/c mice. Key parameters, including cytokine levels, oxidative stress markers, and neuronal marker expression, were analyzed. Results: The PLGA-EVG and PLGA-CUR NPs demonstrated high EE% (~90.63 ± 4.21 for EVG and 87.59 ± 3.42 for CUR) and sizes under 140 nm, ensuring blood-brain barrier (BBB) permeability. In vitro studies showed enhanced intracellular EVG concentrations and reductions in proinflammatory cytokines (IL-1β, TNFα, and IL-18) and improved antioxidant capacity in U1 macrophages. In vivo, the co-administration of NPs improved CNS drug delivery, reduced neuroinflammation and oxidative stress, and preserved neuronal markers (L1CAM, synaptophysin, NeuN, GFAP). Conclusions: PLGA-based co-delivery of EVG and CUR enhances ART CNS drug delivery, mitigating neuroinflammation and reducing oxidative stress. These findings highlight the potential of nanoparticle-based ART strategies to address limitations in current regimens and pave the way for more effective HAND therapies. Future studies should focus on optimizing formulations and evaluating safety in chronic HIV settings.
Collapse
Affiliation(s)
- Sandip Godse
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.G.); (L.Z.); (N.S.); (G.M.)
| | - Lina Zhou
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.G.); (L.Z.); (N.S.); (G.M.)
| | - Namita Sinha
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.G.); (L.Z.); (N.S.); (G.M.)
| | - Golnoush Mirzahosseini
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.G.); (L.Z.); (N.S.); (G.M.)
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.G.); (L.Z.); (N.S.); (G.M.)
| |
Collapse
|
5
|
Herdiana Y. Nanoparticles of natural product-derived medicines: Beyond the pandemic. Heliyon 2025; 11:e42739. [PMID: 40083991 PMCID: PMC11904502 DOI: 10.1016/j.heliyon.2025.e42739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
This review explores the synergistic potential of natural products and nanotechnology for viral infections, highlighting key antiviral, immunomodulatory, and antioxidant properties to combat pandemics caused by highly infectious viruses. These pandemics often result in severe public health crises, particularly affecting vulnerable populations due to respiratory complications and increased mortality rates. A cytokine storm is initiated when an overload of pro-inflammatory cytokines and chemokines is released, leading to a systemic inflammatory response. Viral mutations and the limited availability of effective drugs, vaccines, and therapies contribute to the continuous transmission of the virus. The coronavirus disease-19 (COVID-19) pandemic has sparked renewed interest in natural product-derived antivirals. The efficacy of traditional medicines against pandemic viral infections is examined. Their antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties are highlighted. This review discusses how nanotechnology enhances the efficacy of herbal medicines in combating viral infections.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
6
|
Perra M, Castangia I, Aroffu M, Fulgheri F, Abi-Rached R, Manca ML, Cortés H, Del Prado-Audelo ML, Nomura-Contreras C, Romero-Montero A, Büsselberg D, Leyva-Gómez G, Sharifi-Rad J, Calina D. Maytansinoids in cancer therapy: advancements in antibody-drug conjugates and nanotechnology-enhanced drug delivery systems. Discov Oncol 2025; 16:73. [PMID: 39838217 PMCID: PMC11751265 DOI: 10.1007/s12672-025-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Cancer remains the second leading cause of death globally, driving the need for innovative therapies. Among natural compounds, maytansinoids have shown significant promise, contributing to nearly 25% of recently approved anticancer drugs. Despite their potential, early clinical trials faced challenges due to severe side effects, prompting advancements in delivery systems such as antibody-maytansinoid conjugates (AMCs). This review highlights the anticancer activity of maytansinoids, with a focus on AMCs designed to target cancer cells specifically. Preclinical and clinical studies show that AMCs, including FDA-approved drugs like Kadcyla and Elahere, effectively inhibit tumor growth while reducing systemic toxicity. Key developments include improved synthesis methods, linker chemistry and payload design. Ongoing research aims to enhance the safety and efficacy of AMCs, integrate nanotechnology for drug delivery, and identify novel therapeutic targets. These advancements hold potential to transform maytansinoid-based cancer treatments in the future.
Collapse
Affiliation(s)
- Matteo Perra
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Ines Castangia
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Matteo Aroffu
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Federica Fulgheri
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Rita Abi-Rached
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Maria Letizia Manca
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | | | | | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
7
|
Parvin N, Joo SW, Mandal TK. Biodegradable and Stimuli-Responsive Nanomaterials for Targeted Drug Delivery in Autoimmune Diseases. J Funct Biomater 2025; 16:24. [PMID: 39852580 PMCID: PMC11766201 DOI: 10.3390/jfb16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Autoimmune diseases present complex therapeutic challenges due to their chronic nature, systemic impact, and requirement for precise immunomodulation to avoid adverse side effects. Recent advancements in biodegradable and stimuli-responsive nanomaterials have opened new avenues for targeted drug delivery systems capable of addressing these challenges. This review provides a comprehensive analysis of state-of-the-art biodegradable nanocarriers such as polymeric nanoparticles, liposomes, and hydrogels engineered for targeted delivery in autoimmune therapies. These nanomaterials are designed to degrade safely in the body while releasing therapeutic agents in response to specific stimuli, including pH, temperature, redox conditions, and enzymatic activity. By achieving localized and controlled release of anti-inflammatory and immunosuppressive agents, these systems minimize systemic toxicity and enhance therapeutic efficacy. We discuss the underlying mechanisms of stimuli-responsive nanomaterials, recent applications in treating diseases such as rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease, and the design considerations essential for clinical translation. Additionally, we address current challenges, including biocompatibility, scalability, and regulatory hurdles, as well as future directions for integrating advanced nanotechnology with personalized medicine in autoimmune treatment. This review highlights the transformative potential of biodegradable and stimuli-responsive nanomaterials, presenting them as a promising strategy to advance precision medicine and improve patient outcomes in autoimmune disease management.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas K. Mandal
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
8
|
Sahin H, Yucel O, Holloway P, Yildirim E, Emik S, Gurdag G, Tanriverdi G, Erkanli Senturk G. Comparison of Drug Delivery Systems with Different Types of Nanoparticles in Terms of Cellular Uptake and Responses in Human Endothelial Cells, Pericytes, and Astrocytes. Pharmaceuticals (Basel) 2024; 17:1567. [PMID: 39770409 PMCID: PMC11679882 DOI: 10.3390/ph17121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The key components of the blood-brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. Nearly all large therapeutic molecules and over 90% of small-molecule drugs cannot cross the BBB. To overcome this challenge, nanotechnology, particularly drug delivery systems such as nanoparticles (NPs), have gained significant attention. Methods: Poly(lactide-co-glycolide) (PLGA) and albumin-based NPs (bovine/human), with or without transferrin (Tf) ligands (BSA, HSA, BSA-Tf, HSA-Tf), and nanolipid carriers (NLC) were synthesized. The interactions of these NPs with human brain microvascular endothelial cells (hBMECs), human brain vascular pericytes (hBVPs), and human astrocytes (hASTROs) were analyzed. Results: At doses of 15.62 µg/mL, 31.25 µg/mL, and 62.5 µg/mL, none of the NPs caused toxic effects on hBMECs, hBVPs, or hASTROs after 3 h of incubation. All NPs were internalized by the cells, but BSA-Tf and HSA-Tf showed significantly higher uptake in hBMECs in a dose-dependent manner. Ultrastructural analysis revealed notable differences between NP formulation and cell type. Conclusions: Our findings underscore the potential of ligand-targeted NPs to selectively interact with BBB endothelial cells. Ultrastructural analysis reveals distinct cellular processing pathways for various NP formulations across BBB-associated cell types, with autophagy emerging as a crucial mechanism for NP handling in pericytes and astrocytes. Changes in NP chemical properties upon biological exposure present significant challenges for nanomedicine design, emphasizing the need for further investigation into NP interactions at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Hakan Sahin
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.T.); (G.E.S.)
| | - Oguz Yucel
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Paul Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
| | - Eren Yildirim
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Serkan Emik
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Gulten Gurdag
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Gamze Tanriverdi
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.T.); (G.E.S.)
| | - Gozde Erkanli Senturk
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.T.); (G.E.S.)
| |
Collapse
|