1
|
El-Shiekh RA, Atwa AM, Elgindy AM, Ibrahim KM, Senna MM, Ebid N, Mustafa AM. Current Perspective and Mechanistic Insights on α-Hederin for the Prevention and Treatment of Several Noncommunicable Diseases. Chem Biodivers 2025; 22:e202402289. [PMID: 39607970 DOI: 10.1002/cbdv.202402289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
α-Hederin, a naturally occurring compound found in various plant sources, has remarkable properties and therapeutic potential for human health. One notable attribute is its potent anti-inflammatory activity, such as in arthritis, asthma, and inflammatory bowel disease. In addition, it exhibits notable antioxidant effects implicated in the development of chronic diseases, including cardiovascular disorders and certain types of cancer. According to research, it may limit the growth and proliferation of cancer cells, making it a possible candidate for future cancer treatments. Moreover, it is a promising neuroprotective agent and enhances cognitive function, suggesting its potential in the treatment of neurodegenerative illnesses like Alzheimer's and Parkinson's disease. The multifaceted benefits of α-hederin make it an intriguing compound with significant therapeutic implications. As research progresses, exploring its mechanisms of action and clinical applications is warranted. Harnessing the potential of α-hederin may pave the way for innovative treatment strategies and improved outcomes in the battle against various chronic diseases.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Faculty of Pharmacy, Department of Pharmacognosy, Cairo University, Cairo, Egypt
| | - Ahmed M Atwa
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, Iraq
| | - Ali M Elgindy
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Kawther Magdy Ibrahim
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Nouran Ebid
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
2
|
Begum NF, Ramadoss R, Yadalam PK, Ramani P, Ramalingam K. Phytochemical Targeting of Nerve Growth Factor by Thymoquinone and Cuscutin: A Molecular Dynamics Simulation Study. Cureus 2024; 16:e63727. [PMID: 39099944 PMCID: PMC11296693 DOI: 10.7759/cureus.63727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Background Nerve growth factor (NGF) is a novel target of pain therapeutics for oral cancer, and it plays a main role in the nociception of chronic pain. Surgery, along with chemotherapy or radiotherapy, is the gold standard for treating patients, but the side effects are significant as well. Newer effective interventions with natural phytochemicals could improve patient compliance and enhance the quality of life among patients with oral cancer. A literature search revealed a positive correlation between NGF and oral cancer pain. Nigella sativa (N. sativa) and Cuscuta reflexa (C. reflexa) have proven anticancer effects, but their activity with NGF is unexplored. Aims and objectives We aimed to identify the potential phytochemicals in N. sativa and C. reflexa. We also checked the NGF-blocking activity of the phytochemicals. Molecular docking and molecular dynamic (MD) simulations evaluated the binding energy and stability between the NGF protein and selected phytochemical ligands. Materials and methods We obtained protein NGF structure from UniProt (ID: 4EDX, P01138, Beta-nerve growth factor), ligand (thymoquinone) structure using PubChem ID: 10281, and ligand (cuscutin) structure using PubChem ID: 66065. Maestro protein (Schrödinger Inc., Mannheim, Germany) was used for molecular docking. Desmond Simulation Package (Schrödinger Inc., Mannheim, Germany) was used to model MD for 100 nanoseconds (ns). We have assessed the interaction between the protein and ligands by root mean square deviation (RMSD) values. Results The interaction of thymoquinone and cuscutin with NGF was assessed. While interacting with thymoquinone, there was mild fluctuation from 0.6 Å to 2.5 Å up to 80 ns and ended up at 4.8 Å up to 100 ns. While interacting with cuscutin, mild fluctuation was seen from 0.8 Å to 4.8 Å till 90 ns and ended at 6.4 Å up to 100 ns. We found a stable interaction between our drug combination and the NGF receptor. Conclusion We have identified a stable interaction between thymoquinone, cuscutin, and NGF by our MD simulations. Hence, it could be used as an NGF inhibitor for pain relief and to control tumor progression. Further in vitro and in vivo evaluations of this novel drug combination with phytochemicals will help us understand their biological activities and potential clinical applications in oral cancer therapeutics.
Collapse
Affiliation(s)
- N Fazulunnisa Begum
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ramya Ramadoss
- Oral Pathology and Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pradeep Kumar Yadalam
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pratibha Ramani
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Fath MK, Nasiri K, Ghasemzadeh S, Nejati ST, Ghafari N, Masouleh SS, Dadgar E, Kazemi KS, Esfahaniani M. Thymoquinone potentiates anti-cancer effects of cisplatin in oral squamous cell carcinoma via targeting oxidative stress. Chem Biol Drug Des 2024; 103:e14492. [PMID: 38485457 DOI: 10.1111/cbdd.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Recent evidence has proved that thymoquinone as a natural polyphenol has great anticancer and anti-proliferative effects in cancer cells. In this study, we aimed to examine the effects of thymoquinone on increasing cisplatin-induced apoptosis human oral squamous cell carcinoma cells and its underlying molecular mechanisms. SCC-25 cancer cells treated by thymoquinone and cisplatin with different concentrations. Cell viability will determine by using MTT assay. The concentrations of reactive oxygen species (ROS) and antioxidant activities were determined using specific related kits. DNA damage, lipid, and protein oxidation were assessed. Real-time PCR and Western blot analysis will be used to determine the expression of apoptosis-related proteins including Bax, Bcl-2, and caspase-3. Combination of thymoquinone and cisplatin suppressed synergistically SCC-25 cancer cell viability and induced apoptosis in dose-depended manner. Cell treatment with combination of thymoquinone and cisplatin led to accumulation of ROS within cells and increase in the intracellular levels of DNA damage, protein and lipid peroxidation. In addition, the combination of thymoquinone and cisplatin modulated the mRNA and protein expression levels of apoptosis-related proteins including Bax, Bcl-2, and caspase-3. Thymoquinone potentiated cisplatin anti-cancer effect on OSCC by inducing oxidative stress in cells.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | - Nima Ghafari
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Meng D, Ren M, Li M, Wang M, Geng W, Shang Q. Molecular mechanism of α-Hederin in tumor progression. Biomed Pharmacother 2024; 170:116097. [PMID: 38160624 DOI: 10.1016/j.biopha.2023.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
α-Hederin is a monosaccharide pentacyclic triterpene saponin compound derived from the Chinese herb, Pulsatilla. It has garnered considerable attention for its anti-tumor, anti-inflammatory, and spasmolytic pharmacological activities. Given the rising incidence of cancer and the pronounced adverse reactions associated with chemotherapy drugs-which profoundly impact the quality of life for cancer patients-there is an immediate need for safe and effective antitumor agents. Traditional drugs and their anticancer effects have become a focal point of research in recent years. Studies indicate that α-Hederin can hinder tumor cell proliferation and impede the advancement of various cancers, including breast, lung, colorectal, and liver cancers. The principal mechanism behind its anti-tumor activity involves inhibiting tumor cell proliferation, facilitating tumor cell apoptosis, and arresting the cell cycle process. Current evidence suggests that α-Hederin can exert its anti-tumor properties through diverse mechanisms, positioning it as a promising agent in anti-tumor therapy. However, a comprehensive literature search revealed a gap in the comprehensive understanding of α-Hederin. This paper aims to review the available literature on the anti-tumor mechanisms of α-Hederin, hoping to provide valuable insights for the clinical treatment of malignant tumors and the innovation of novel anti-tumor medications.
Collapse
Affiliation(s)
- Dandan Meng
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan 250355, Shangdong, China
| | - Meng Ren
- Department of Physical Education, Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan 250355, Shangdong, China
| | - Maofeng Li
- College of Foreign Chinese, Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan 250355, Shangdong, China
| | - Min Wang
- Experimental Center of Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan 250355, Shangdong, China
| | - Wei Geng
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, No. 238, Jingshi East Road, Lixia District, Jinan 250014, China
| | - Qingxin Shang
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan 250355, Shangdong, China.
| |
Collapse
|
5
|
Belmehdi O, Taha D, Abrini J, Ming LC, Khalid A, Abdalla AN, Algarni AS, Hermansyah A, Bouyahya A. Anticancer properties and mechanism insights of α-hederin. Biomed Pharmacother 2023; 165:115205. [PMID: 37499451 DOI: 10.1016/j.biopha.2023.115205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
α-Hederin is a natural bioactive molecule very abundant in aromatic and medicinal plants (AMP). It was identified, characterized, and isolated using different extraction and characterization technologies, such as HPLC, LC-MS and NMR. Biological tests have revealed that this natural molecule possesses different biological properties, particularly anticancer activity. Indeed, this activity has been investigated against several cancers (e.g., esophageal, hepatic, breast, colon, colorectal, lung, ovarian, and gastric). The underlying mechanisms are varied and include induction of apoptosis and cell cycle arrest, reduction of ATP generation, as well as inhibition of autophagy, cell proliferation, invasion, and metastasis. In fact, these anticancer mechanisms are considered the most targeted for new chemotherapeutic agents' development. In the light of all these data, α-hederin could be a very interesting candidate as an anticancer drug for chemotherapy, as well as it could be used in combination with other molecules already validated or possibly investigated as an agent sensitizing tumor cells to chemotherapeutic treatments.
Collapse
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Douae Taha
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, the Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah , Saudi Arabia.
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah , Saudi Arabia.
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
6
|
Kwan K, Han AY, Mukdad L, Barragan F, Selim O, Alhiyari Y, St. John M. Anticancer effects of thymoquinone in head and neck squamous cell carcinoma: A scoping review. Laryngoscope Investig Otolaryngol 2023; 8:876-885. [PMID: 37731860 PMCID: PMC10508265 DOI: 10.1002/lio2.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 09/22/2023] Open
Abstract
Objective Thymoquinone (TQ), the active constituent of Nigella sativa, has been shown to have anticancer effects in head and neck squamous cell carcinoma (HNSCC). This review aims to outline the properties of TQ, the known drivers in HNSCC formation, and summarize the anticancer effects of TQ in SCC. Data Sources Three databases (PubMed, Embase, and Google Scholar) were queried for the key words "thymoquinone squamous cell carcinoma." Review Methods Publications that were not original research and publications that did not have full-text available for review were excluded. Results Sixteen research articles met the inclusion criteria. Our review demonstrates that TQ-induced cytotoxicity is associated with increased expression and activity of the tumor suppressor p53, proapoptotic proteins Bax and caspases, as well as decreased expression and activity of antiapoptotic proteins Bcl-2 and Mdm2. Additionally, TQ modulates cell-survival pathways such as the PI3k/Akt pathway. TQ synergizes with therapeutics including cisplatin and radiation. Early TQ administration may prevent carcinogenesis via upregulation of antioxidant enzymes, and TQ administration in the presence of cancer can result in disease mitigation via induction of oxidative stress. Conclusion TQ acts as an upregulator of proapoptotic pathways and downregulator of antiapoptotic pathways, modulates the oxidative stress balance in tumor development, and works synergistically alongside other chemotherapeutics to increase cytotoxicity. TQ has the potential to prevent carcinogenesis in patients who are at high-risk for SCC and adjuvant treatment for SCC patients undergoing conventional treatments. Future studies should aim to identify specific populations in which TQ's effects would be the most beneficial. Level of Evidence Not available.
Collapse
Affiliation(s)
- Kera Kwan
- UCLA Department of SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Albert Y. Han
- Department of Head and Neck SurgeryUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Laith Mukdad
- UCLA Head and Neck Cancer SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Frida Barragan
- UCLA Head and Neck Cancer SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Omar Selim
- UCLA Head and Neck Cancer SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Yazeed Alhiyari
- UCLA Head and Neck Cancer SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Maie St. John
- UCLA Head and Neck Cancer SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| |
Collapse
|
7
|
Tabassum S, Thakur V, Rosli N, Ichwan SJA, Mishra P, Suriyah WH. Therapeutic implications of thymoquinone and its molecular and functional mechanisms against oral and lung cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Baig WA, Alwosaibai K, Al-Jubran KM, Chaudhry TM, Al-Dowish N, Alsaffar F, Alam MA. Synergistic anti-cancer effects of Nigella sativa seed oil and conventional cytotoxic agent against human breast cancer. Drug Metab Pers Ther 2022; 37:315-321. [PMID: 35405048 DOI: 10.1515/dmpt-2021-0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Breast cancer is the most commonly diagnosed invasive non-skin malignancy in women worldwide, and it is the leading cause of cancer-related deaths in them. Nigella sativa Linn. seed oil has been found to be effective in cancer treatment as well as having anti-cancer properties in some other types of cancers. The study looked into the synergistic cytotoxic effects of N. sativa Linn. seed oil and doxorubicin in the treatment of human breast cancer cells (MCF-7). METHODS Nigella sativa Linn. seed oil was used to evaluate its effect on human breast cancer cells, either alone or in conjunction with doxorubicin. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests were used to examine cell proliferation and cell viability, while phase-contrast inverted microscopy was used to examine cellular morphology. Furthermore, the role of N. sativa seed oil in decreasing cell tumorigenicity features was highlighted by testing the cancer cell migration using the wound healing assay. RESULTS Results showed that higher concentrations (50 μg/mL) of N. sativa Linn. seed oil changed the breast cancer cell morphology and decreased the cell proliferation and viability. Breast cancer cells treated with black seed oil decreased cell movement after 24 hours compared to the untreated cell in the wound healing assay. Whereas, only the higher concentration of doxorubicin (0.5-2.5 μg/mL) reduced cell proliferation and cell viability. Moreover, the combination treatment of 50 ug/mL of black seed oil with different concentrations of doxorubicin caused a significant cell proliferation reduction and decreased cell viability. The activity was seen optimum at lower concentration (0.1 µg/mL) of doxorubicin. CONCLUSIONS There was decreased cell proliferation and cell viability when N. sativa seed oil was used alone or in conjunction with doxorubicin in Breast cancer cells (MCF-7) revealing potential opportunities in the field of cancer treatment.
Collapse
Affiliation(s)
- Waheed A Baig
- Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | | | - Khalid M Al-Jubran
- Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Tariq M Chaudhry
- Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | | | | | - Md Anzar Alam
- Department of Ilmul Atfal, SUMER, Jamia Hamdard, New Delhi-110062
| |
Collapse
|
9
|
Dalli M, Bekkouch O, Azizi SE, Azghar A, Gseyra N, Kim B. Nigella sativa L. Phytochemistry and Pharmacological Activities: A Review (2019-2021). Biomolecules 2021; 12:20. [PMID: 35053168 PMCID: PMC8773974 DOI: 10.3390/biom12010020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Medicinal and aromatic plants are mainly characterized by the presence of different bioactive compounds which exhibit various therapeutic activities. In order to investigate the different pharmacological properties of different Nigella sativa extracts, a multitude of research articles published in the period between 2019 and 2021 were obtained from different databases (Scopus, Science Direct, PubMed, and Web of Science), and then explored and analyzed. The analysis of the collected articles allows us to classify the phytochemicals and the pharmacological activities through their underlying molecular mechanisms, as well as to explore the pharmacological activities exhibited by several identified compounds in Nigella sativa which allow a better understanding, and better elucidation, of the bioactive compounds responsible for the pharmacological effects. Also shown are the existence of other bioactive compounds that are still unexplored and could be of great interest. This review could be taken as a guide for future studies in the field.
Collapse
Affiliation(s)
- Mohammed Dalli
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Oussama Bekkouch
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Salah-eddine Azizi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Ali Azghar
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|