1
|
Scalia IG, Gheyath B, Tamarappoo BK, Moudgil R, Otton J, Pereyra M, Narayanasamy H, Larsen C, Herrmann J, Arsanjani R, Ayoub C. Chemotherapy Related Cardiotoxicity Evaluation-A Contemporary Review with a Focus on Cardiac Imaging. J Clin Med 2024; 13:3714. [PMID: 38999280 PMCID: PMC11242267 DOI: 10.3390/jcm13133714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The long-term survivorship of patients diagnosed with cancer has improved due to accelerated detection and rapidly evolving cancer treatment strategies. As such, the evaluation and management of cancer therapy related complications has become increasingly important, including cardiovascular complications. These have been captured under the umbrella term "cardiotoxicity" and include left ventricular dysfunction and heart failure, acute coronary syndromes, valvular abnormalities, pericardial disease, arrhythmia, myocarditis, and vascular complications. These complications add to the burden of cardiovascular disease (CVD) or are risk factors patients with cancer treatment are presenting with. Of note, both pre- and newly developing CVD is of prognostic significance, not only from a cardiovascular perspective but also overall, potentially impacting the level of cancer therapy that is possible. Currently, there are varying recommendations and practices regarding CVD risk assessment and mitigating strategies throughout the cancer continuum. This article provides an overview on this topic, in particular, the role of cardiac imaging in the care of the patient with cancer. Furthermore, it summarizes the current evidence on the spectrum, prevention, and management of chemotherapy-related adverse cardiac effects.
Collapse
Affiliation(s)
- Isabel G. Scalia
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Bashaer Gheyath
- Department of Imaging, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Balaji K. Tamarappoo
- Division of Cardiology, Banner University Medical Center, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Rohit Moudgil
- Department of Cardiology, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - James Otton
- Clinical School, St. Vincent’s Hospital, UNSW, Sydney, NSW 2010, Australia
| | - Milagros Pereyra
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Hema Narayanasamy
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Carolyn Larsen
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Reza Arsanjani
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Chadi Ayoub
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| |
Collapse
|
2
|
Lucas JT, Abramson ZR, Epstein K, Morin CE, Jaju A, Lee JW, Lee CL, Sitaram R, Voss SD, Hudson MM, Constine LS, Hua CH. Imaging Assessment of Radiation Therapy-Related Normal Tissue Injury in Children: A PENTEC Visionary Statement. Int J Radiat Oncol Biol Phys 2024; 119:669-680. [PMID: 38760116 PMCID: PMC11684541 DOI: 10.1016/j.ijrobp.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 05/19/2024]
Abstract
The Pediatric Normal Tissue Effects in the Clinic (PENTEC) consortium has made significant contributions to understanding and mitigating the adverse effects of childhood cancer therapy. This review addresses the role of diagnostic imaging in detecting, screening, and comprehending radiation therapy-related late effects in children, drawing insights from individual organ-specific PENTEC reports. We further explore how the development of imaging biomarkers for key organ systems, alongside technical advancements and translational imaging approaches, may enhance the systematic application of imaging evaluations in childhood cancer survivors. Moreover, the review critically examines knowledge gaps and identifies technical and practical limitations of existing imaging modalities in the pediatric population. Addressing these challenges may expand access to, minimize the risk of, and optimize the real-world application of, new imaging techniques. The PENTEC team envisions this document as a roadmap for the future development of imaging strategies in childhood cancer survivors, with the overarching goal of improving long-term health outcomes and quality of life for this vulnerable population.
Collapse
Affiliation(s)
| | - Zachary R Abramson
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Katherine Epstein
- Division of Radiology and Medical Imaging, UC Department of Radiology, Cincinnati, Ohio
| | - Cara E Morin
- Division of Radiology and Medical Imaging, UC Department of Radiology, Cincinnati, Ohio
| | - Alok Jaju
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Chang-Lung Lee
- Department of Radiation Oncology and; Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Ranganatha Sitaram
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephan D Voss
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Louis S Constine
- Department of Radiation Oncology, James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
3
|
Morin CE, Griffin LM, Beroukhim RS, Caro-Domínguez P, Chan S, Johnson JN, Infante JC, Lam CZ, Malone LJ, Tang ER, Taylor MD, Wilkinson JC, Masand PM. Imaging of pediatric cardiac tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee White Paper. Pediatr Blood Cancer 2023; 70 Suppl 4:e29955. [PMID: 36083866 PMCID: PMC10641876 DOI: 10.1002/pbc.29955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
Cardiac tumors in children are rare and the majority are benign. The most common cardiac tumor in children is rhabdomyoma, usually associated with tuberous sclerosis complex. Other benign cardiac masses include fibromas, myxomas, hemangiomas, and teratomas. Primary malignant cardiac tumors are exceedingly rare, with the most common pathology being soft tissue sarcomas. This paper provides consensus-based imaging recommendations for the evaluation of patients with cardiac tumors at diagnosis and follow-up, including during and after therapy.
Collapse
Affiliation(s)
- Cara E. Morin
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | | | - Pablo Caro-Domínguez
- Pediatric Radiology Unit, Department of Radiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Sherwin Chan
- Department of Radiology, Children’s Mercy Kansas City, Kansas City, MO; Department of Radiology, University of Missouri at Kansas City School of Medicine, Kansas City, MO
| | - Jason N. Johnson
- Department of Pediatrics and Radiology, The University of Tennessee Health Science Center, Le Bonheur Children’s Hospital, Memphis, TN
| | - Juan C. Infante
- Department of Radiology, Nemours Children’s Hospital, Orlando, FL
| | - Christopher Z. Lam
- Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - LaDonna J. Malone
- Department of Radiology, University of Colorado, Children’s Hospital of Colorado, Aurora, CO
| | - Elizabeth R. Tang
- Radiology Department, Seattle Children’s Hospital, University of Washington School of Medicine, Seattle, WA
| | - Michael D. Taylor
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - James C. Wilkinson
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Prakash M. Masand
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital
| |
Collapse
|
4
|
Mabudian L, Jordan JH, Bottinor W, Hundley WG. Cardiac MRI assessment of anthracycline-induced cardiotoxicity. Front Cardiovasc Med 2022; 9:903719. [PMID: 36237899 PMCID: PMC9551168 DOI: 10.3389/fcvm.2022.903719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this review article is to discuss how cardiovascular magnetic resonance (CMR) imaging measures left ventricular (LV) function, characterizes tissue, and identifies myocardial fibrosis in patients receiving anthracycline-based chemotherapy (Anth-bC). Specifically, CMR can measure LV ejection fraction (EF), volumes at end-diastole (LVEDV), and end-systole (LVESV), LV strain, and LV mass. Tissue characterization is accomplished through T1/T2-mapping, late gadolinium enhancement (LGE), and CMR perfusion imaging. Despite CMR’s accuracy and efficiency in collecting data about the myocardium, there are challenges that persist while monitoring a cardio-oncology patient undergoing Anth-bC, such as the presence of other cardiovascular risk factors and utility controversies. Furthermore, CMR can be a useful adjunct during cardiopulmonary exercise testing to pinpoint cardiovascular mediated exercise limitations, as well as to assess myocardial microcirculatory damage in patients undergoing Anth-bC.
Collapse
Affiliation(s)
- Leila Mabudian
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
| | - Jennifer H. Jordan
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Wendy Bottinor
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
| | - W. Gregory Hundley
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
- *Correspondence: W. Gregory Hundley,
| |
Collapse
|
5
|
Gambril JA, Chum A, Goyal A, Ruz P, Mikrut K, Simonetti O, Dholiya H, Patel B, Addison D. Cardiovascular Imaging in Cardio-Oncology: The Role of Echocardiography and Cardiac MRI in Modern Cardio-Oncology. Heart Fail Clin 2022; 18:455-478. [PMID: 35718419 PMCID: PMC9280694 DOI: 10.1016/j.hfc.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular (CV) events are an increasingly common limitation of effective anticancer therapy. Over the last decade imaging has become essential to patients receiving contemporary cancer therapy. Herein we discuss the current state of CV imaging in cardio-oncology. We also provide a practical apparatus for the use of imaging in everyday cardiovascular care of oncology patients to improve outcomes for those at risk for cardiotoxicity, or with established cardiovascular disease. Finally, we consider future directions in the field given the wave of new anticancer therapies.
Collapse
Affiliation(s)
- John Alan Gambril
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH, USA; Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA. https://twitter.com/GambrilAlan
| | - Aaron Chum
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA
| | - Akash Goyal
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA. https://twitter.com/agoyalMD
| | - Patrick Ruz
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA
| | - Katarzyna Mikrut
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA. https://twitter.com/KatieMikrut
| | - Orlando Simonetti
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA; Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA; Department of Radiology, The Ohio State University Medical Center, Columbus, OH, USA
| | - Hardeep Dholiya
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA. https://twitter.com/Hardeep_10
| | - Brijesh Patel
- Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA; Cardio-Oncology Program, Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Martinez HR, Beasley GS, Goldberg JF, Absi M, Ryan KA, Guerrier K, Joshi VM, Johnson JN, Morin CE, Hurley C, Morrison RR, Rai P, Hankins JS, Bishop MW, Triplett BM, Ehrhardt MJ, Pui CH, Inaba H, Towbin JA. Pediatric Cardio-Oncology Medicine: A New Approach in Cardiovascular Care. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121200. [PMID: 34943396 PMCID: PMC8699848 DOI: 10.3390/children8121200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
Survival for pediatric patients diagnosed with cancer has improved significantly. This achievement has been made possible due to new treatment modalities and the incorporation of a systematic multidisciplinary approach for supportive care. Understanding the distinctive cardiovascular characteristics of children undergoing cancer therapies has set the underpinnings to provide comprehensive care before, during, and after the management of cancer. Nonetheless, we acknowledge the challenge to understand the rapid expansion of oncology disciplines. The limited guidelines in pediatric cardio-oncology have motivated us to develop risk-stratification systems to institute surveillance and therapeutic support for this patient population. Here, we describe a collaborative approach to provide wide-ranging cardiovascular care to children and young adults with oncology diseases. Promoting collaboration in pediatric cardio-oncology medicine will ultimately provide excellent quality of care for future generations of patients.
Collapse
Affiliation(s)
- Hugo R. Martinez
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
- Correspondence:
| | - Gary S. Beasley
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Jason F. Goldberg
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Mohammed Absi
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Kaitlin A. Ryan
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Karine Guerrier
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Vijaya M. Joshi
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Jason N. Johnson
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| | - Cara E. Morin
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Caitlin Hurley
- Division of Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.H.); (R.R.M.)
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Ronald Ray Morrison
- Division of Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.H.); (R.R.M.)
| | - Parul Rai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (P.R.); (J.S.H.)
| | - Jane S. Hankins
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (P.R.); (J.S.H.)
| | - Michael W. Bishop
- Division of Solid Tumor, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Brandon M. Triplett
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Matthew J. Ehrhardt
- Division of Cancer Survivorship, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ching-Hon Pui
- Division of Leukemia/Lymphoma, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.-H.P.); (H.I.)
| | - Hiroto Inaba
- Division of Leukemia/Lymphoma, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (C.-H.P.); (H.I.)
| | - Jeffrey A. Towbin
- Division of Pediatric Cardiology, The Heart Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (G.S.B.); (J.F.G.); (M.A.); (K.A.R.); (K.G.); (V.M.J.); (J.N.J.); (J.A.T.)
| |
Collapse
|