1
|
Kanagasabai R, Karthikeyan K, Zweier JL, Ilangovan G. Serine mutations in overexpressed Hsp27 abrogate the protection against doxorubicin-induced p53-dependent cardiac apoptosis in mice. Am J Physiol Heart Circ Physiol 2021; 321:H963-H975. [PMID: 34477462 DOI: 10.1152/ajpheart.00027.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small heat shock proteins (sHsps) protect the heart from chemotherapeutics-induced heart failure by inhibiting p53-dependent apoptosis. However, mechanism of such protection has not been elucidated yet. Here we test a hypothesis that serine phosphorylation of sHsps is essential to inhibit the doxorubicin-induced and p53-dependent apoptotic pathway. Three transgenic mice (TG) lines with cardiomyocyte-specific overexpression of human heat shock protein 27 (hHsp27), namely, wild-type [myosin heavy chain (MHC)-hHsp27], S82A single mutant [MHC-mut-hHsp27(S82A)], and trimutant [MHC-mut-hHsp27(S15A/S78A/S82A)] were generated. TG mice were treated with Dox (6 mg/kg body wt; once in a week; 4 wk) along with age-matched nontransgenic (non-TG) controls. The Dox-treated MHC-hHsp27 mice showed improved survival and cardiac function (both MRI and echocardiography) in terms of contractility [ejection fraction (%EF)] and left ventricular inner diameter (LVID) compared with the Dox-treated non-TG mice. However, both MHC-mut-hHsp27(S82A) and MHC-mut-hHsp27(S15A/S78A/S82A) mutants overexpressing TG mice did not show such a cardioprotection. Furthermore, transactivation of p53 was found to be attenuated only in Dox-treated MHC-hHsp27 mice-derived cardiomyocytes in vitro, as low p53 was detected in the nuclei, not in mutant hHsp27 overexpressing cardiomyocytes. Similarly, only in MHC-hHsp27 overexpressing cardiomyocytes, low Bax, higher mechanistic target of rapamycin (mTOR) phosphorylation, and low apoptotic poly(ADP-ribose) polymerase-1 (PARP-1) cleavage (89 kDa fragment) were detected. Pharmacological inhibition of p53 was more effective in mutant TG mice compared with MHC-hHsp27 mice. We conclude that phosphorylation of overexpressed Hsp27 at S82 and its association with p53 are essential for the cardioprotective effect of overexpressed Hsp27 against Dox-induced dilated cardiomyopathy. Only phosphorylated Hsp27 protects the heart by inhibiting p53 transactivation.NEW & NOTEWORTHY Requirement of serine phosphorylation in Hsp27 for cardioprotective effect against Dox is tested in various mutants overexpressing mice. Cardioprotective effect was found to be compromised in Hsp27 serine mutants overexpressed mice compared with wild-type overexpressing mice. These results indicate that cancer patients, who carry these mutations, may have higher risk of aggravated cardiomyopathy on treated with cardiotoxic chemotherapeutics such as doxorubicin.
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Krishnamurthy Karthikeyan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Govindasamy Ilangovan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
D'Souza S, Nair AP, Sahu GR, Vaidya T, Shetty R, Khamar P, Mullick R, Gupta S, Dickman MM, Nuijts RMMA, Mohan RR, Ghosh A, Sethu S. Keratoconus patients exhibit a distinct ocular surface immune cell and inflammatory profile. Sci Rep 2021; 11:20891. [PMID: 34686755 PMCID: PMC8536707 DOI: 10.1038/s41598-021-99805-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory factors have been considered to contribute to keratoconus (KC) pathogenesis. This study aims to determine the immune cells subsets and soluble inflammatory factor profile on the ocular surface of KC patients. 32 KC subjects (51 eyes) across different grades of severity and 15 healthy controls (23 eyes) were included in the study. Keratometry and pachymetry measurements were recorded. Ocular surface immune cells (collected by ocular surface wash) immunophenotyped using flow cytometry include leukocytes, neutrophils, macrophages, natural killer (NK) cells, pan-T cells, gamma delta T (γδT) cells and NKT cells. Tear fluid collected using Schirmer's strip was used to measure 50 soluble factors by multiplex ELISA. Proportions of activated neutrophils, NK cells and γδT cells were significantly increased in KC patients. Significantly higher levels of tear fluid IL-1β, IL-6, LIF, IL-17A, TNFα, IFNα/β/γ, EPO, TGFβ1, PDGF-BB, sVCAM, sL-selectin, granzyme-B, perforin, MMP2, sFasL and IgE, along with significantly lower levels of IL-1α and IL-9 were observed in KC patients. Alterations observed in few of the immuno-inflammatory parameters correlated with grades of disease, allergy, eye rubbing and keratometry or pachymetry measurements. The observation implies a distinct immuno-inflammatory component in KC pathogenesis and its potential as an additional therapeutic target in KC management.
Collapse
Affiliation(s)
- Sharon D'Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Archana Padmanabhan Nair
- GROW Research Laboratory, Narayana Nethralaya Foundation, 3rd Floor, Narayana Nethralaya, #258/A Hosur Road, Bommasandra, Bangalore, 560099, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ganesh Ram Sahu
- GROW Research Laboratory, Narayana Nethralaya Foundation, 3rd Floor, Narayana Nethralaya, #258/A Hosur Road, Bommasandra, Bangalore, 560099, India
| | - Tanuja Vaidya
- GROW Research Laboratory, Narayana Nethralaya Foundation, 3rd Floor, Narayana Nethralaya, #258/A Hosur Road, Bommasandra, Bangalore, 560099, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Pooja Khamar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Ritika Mullick
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Sneha Gupta
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Mor M Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rajiv R Mohan
- Department of Veterinary Medicine and Surgery, University of Missouri, 1600 E. Rollins Rd, Columbia, MO, 65211, USA. .,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA. .,Harry S Truman Veterans' Memorial Hospital, Columbia, MO, USA.
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, 3rd Floor, Narayana Nethralaya, #258/A Hosur Road, Bommasandra, Bangalore, 560099, India. .,Singapore Eye Research Institute, Singapore, Singapore.
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, 3rd Floor, Narayana Nethralaya, #258/A Hosur Road, Bommasandra, Bangalore, 560099, India.
| |
Collapse
|
3
|
Xu Y, Qu X, Zhou J, Lv G, Han D, Liu J, Liu Y, Chen Y, Qu P, Huang X. Pilose Antler Peptide-3.2KD Ameliorates Adriamycin-Induced Myocardial Injury Through TGF-β/SMAD Signaling Pathway. Front Cardiovasc Med 2021; 8:659643. [PMID: 34124197 PMCID: PMC8194399 DOI: 10.3389/fcvm.2021.659643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Adriamycin (ADR)-based combination chemotherapy is the standard treatment for some patients with tumors in clinical, however, long-term application can cause dose-dependent cardiotoxicity. Pilose Antler, as a traditional Chinese medicine, first appeared in the Han Dynasty and has been used to treat heart disease for nearly a thousand years. Previous data revealed pilose antler polypeptide (PAP, 3.2KD) was one of its main active components with multiple biological activities for cardiomyopathy. PAP-3.2KD exerts protective effects againt myocardial fibrosis. The present study demonstrated the protective mechanism of PAP-3.2KD against Adriamycin (ADR)-induced myocardial injury through using animal model with ADR-induced myocardial injury. PAP-3.2KD markedly improved the weight increase and decreased the HW/BW index, heart rate, and ST height in ADR-induced groups. Additionally, PAP-3.2KD reversed histopathological changes (such as disordered muscle bundles, myocardial fibrosis and diffuse myocardial cellular edema) and scores of the heart tissue, ameliorated the myocardial fibrosis and collagen volume fraction through pathological examination, significantly increased the protein level of Bcl-2, and decreased the expression levels of Bax and caspase-3 in myocardial tissue by ELISA, compared to those in ADR-induced group. Furthermore, ADR stimulation induced the increased protein levels of TGF-β1 and SMAD2/3/4, the increased phosphorylation levels of SMAD2/3 and the reduced protein levels of SMAD7. The expression levels of protein above in ADR-induced group were remarkably reversed in PAP-3.2KD-treated groups. PAP-3.2KD ameliorated ADR-induced myocardial injury by regulating the TGF-β/SMAD signaling pathway. Thus, these results provide a strong rationale for the protective effects of PAP against ADR-induced myocardial injury, when ADR is used to treat cancer.
Collapse
Affiliation(s)
- Yan Xu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaobo Qu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Zhou
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Guangfu Lv
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Jinlong Liu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Yuexin Liu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Chen
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China.,Department of Cardiovascular Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Peng Qu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Xiaowei Huang
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Cadeddu Dessalvi C, Deidda M, Noto A, Madeddu C, Cugusi L, Santoro C, López-Fernández T, Galderisi M, Mercuro G. Antioxidant Approach as a Cardioprotective Strategy in Chemotherapy-Induced Cardiotoxicity. Antioxid Redox Signal 2021; 34:572-588. [PMID: 32151144 DOI: 10.1089/ars.2020.8055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chemotherapy-induced cardiotoxicity (CTX) has been associated with redox signaling imbalance. In fact, redox reactions are crucial for normal heart physiology, whereas excessive oxidative stress can cause cardiomyocyte structural damage. Recent Advances: An antioxidant approach as a cardioprotective strategy in this setting has shown encouraging results in preventing anticancer drug-induced CTX. Critical Issues: In fact, traditional heart failure drugs as well as many other compounds and nonpharmacological strategies, with a partial effect in reducing oxidative stress, have been shown to counterbalance chemotherapy-induced CTX in this setting to some extent. Future Directions: Given the various pathways of toxicity involved in different chemotherapeutic schemes, interactions with redox balance need to be fine-tuned and a personalized cardioprotective approach seems to be required.
Collapse
Affiliation(s)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lucia Cugusi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Teresa López-Fernández
- Cardiology Service, Cardio-Oncology Unit, La Paz University Hospital, IdiPAz Research Institute, Ciber CV, Madrid, Spain
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Junga A, Pilmane M, Ābola Z, Volrāts O. Tumor necrosis factor α, protein gene product 9.5, matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 presence in congenital intra-abdominal adhesions in children under one year of age. Arch Med Sci 2021; 17:92-99. [PMID: 33488860 PMCID: PMC7811308 DOI: 10.5114/aoms.2020.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/19/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The regulatory role of cytokines and extracellular matrix remodeling factors in congenital intra-abdominal adhesions has not yet been defined. The aim of this study was to assess the presence and relative distribution of tumor necrosis factor α (TNF-α), protein gene product 9.5 (PGP 9.5), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) in adhesions. MATERIAL AND METHODS TNF-α, PGP 9.5, MMP-2 and TIMP-2 were detected using immunohistochemical methods and their relative distribution was evaluated by means of the semiquantitative counting method. The results were analyzed using non-parametric statistical methods. RESULTS A moderate number of TNF-α positive macrophages and fibroblasts was found. A positive correlation was observed between the immunoreactive structures for TNF-α and PGP 9.5. A positive reaction for PGP 9.5 was observed in nerve fibers and shape modified fibroblasts. In control group tissues, positive structures were seen in significantly higher counts for PGP 9.5. Few to moderate numbers of MMP-2 positive macrophages, epithelioid cells, fibroblasts and endotheliocytes were detected. There was no significant difference between the groups. A positive reaction for TIMP-2 was seen in fibroblasts, macrophages and endotheliocytes. In control group tissues, positive structures were found in significantly higher counts for TIMP-2. CONCLUSIONS The positive correlation between the immunoreactive structures for TNF-α and PGP 9.5 suggests that nerve in-growth into intraabdominal adhesions might be induced by TNF-α and PGP 9.5 could have a role in maintaining inflammation. The down-regulation of PGP 9.5 suggests that pathogenesis of congenital intraabdominal adhesions may be related to hypoxia induced damage. The imbalance between MMP-2 and TIMP-2 may prove tissue fibrosis as a response to congenital peritoneal adhesions.
Collapse
Affiliation(s)
- Anna Junga
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| | - Zane Ābola
- Department of Children Surgery, Rīga Stradiņš University, Riga, Latvia
| | - Olafs Volrāts
- Department of Children Surgery, Rīga Stradiņš University, Riga, Latvia
| |
Collapse
|
6
|
Kazmierak W, Korolczuk A, Kurzepa J, Czechowska G, Boguszewska-Czubara A, Madro A. The influence of erythropoietin on apoptosis and fibrosis in the early phase of chronic pancreatitis in rats. Arch Med Sci 2021; 17:1100-1108. [PMID: 34336038 PMCID: PMC8314426 DOI: 10.5114/aoms.2020.99800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a continuing, inflammatory process of the pancreas, characterised by irreversible morphological changes. The identification of pancreatic stellate cells resulted in the development of research on the pathogenesis of CP. Erythropoietin (Epo) regulates the interaction between apoptosis and inflammation of the brain, kidney, and heart muscle. Erythropoietin receptors were also found in the pancreas, in particular on the islet cells. Our objective was to evaluate the influence of Epo on fibrosis and apoptosis in experimental CP. MATERIAL AND METHODS The experiments were performed on 48 male Wistar rats (250-350 g). The animals were divided into six equal groups (I - control, II - chronic cerulein - induced pancreatitis, III - 1 ml of Epo sc, IV - 0.5 ml of Epo sc, V - CP treated with 1 ml Epo, VI - CP treated with 0.5 ml Epo). The blood for gelatinases and pancreata for the morphological examinations and immunohistochemistry were collected. RESULTS A slight reduction of interstitial oedema and less severe fibrosis were noticed in the groups treated with Epo. Reduced expression of caspase-3 and α-actin, and a lack of Bcl-2 expression were observed in areas with inflammation. There was no expression of caspase-9 observed in all groups. There were no statistically significant differences between the groups in the activity of gelatinases. CONCLUSIONS Erythropoietin seems to have the effect of reducing fibrosis and apoptosis in an experimental model of CP.
Collapse
Affiliation(s)
- Weronika Kazmierak
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Korolczuk
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Jacek Kurzepa
- Department of Medicinal Chemistry, Medical University of Lublin, Lublin, Poland
| | - Grażyna Czechowska
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Lublin, Poland
| | | | - Agnieszka Madro
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Huyut Z, Alp HH, Yaman T, Keleş ÖF, Yener Z, Türkan F, Ayengin K. Comparison of the protective effects of curcumin and caffeic acid phenethyl ester against doxorubicin-induced testicular toxicity. Andrologia 2020; 53:e13919. [PMID: 33289171 DOI: 10.1111/and.13919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/27/2020] [Accepted: 11/08/2020] [Indexed: 12/25/2022] Open
Abstract
Whether testicular toxicity is mediated by matrix metalloproteinases (MMPs) is an important question that has not been examined. This study investigated the suppressive effect of curcumin and caffeic acid phenethyl ester (CAPE) on oxidative stress, apoptosis, and whether MMPs mediate doxorubicin (DOX)-induced testicular injury. Male rats were randomly divided into eight groups (n = 8 per group). The groups were as follows: sham, dimethyl sulphoxide (100 µL), DOX (3 mg/kg), CAPE (2.68 mg/kg), curcumin (30 mg/kg), DOX+CAPE (3 mg/kg DOX and 2.68 mg/kg CAPE), DOX+curcumin (3 mg/kg DOX and 30 mg/kg curcumin) and DOX+CAPE+curcumin (3 mg/kg DOX, 2.68 mg/kg CAPE and 30 mg/kg curcumin). Injections were administered daily for 21 days. The oxidative stress, MMPs, proinflammatory cytokines and apoptotic markers in the DOX group were higher than the sham group (p < .05); these measures were lower in the groups treated with CAPE and curcumin together with DOX compared with the DOX group (p < .05). The results showed that MMPs mediated DOX-induced testicular injury, but CAPE and especially curcumin suppressed testis injury and cell apoptosis by suppressing DOX-induced increases in MMPs, oxidative stress and proinflammatory cytokines. However, curcumin exhibited more pronounced effects than CAPE in terms of all studied parameters.
Collapse
Affiliation(s)
- Zübeyir Huyut
- Medical Faculty, Department of Biochemistry, Van Yuzuncu Yıl University, Van, Turkey
| | - Hamit Hakan Alp
- Medical Faculty, Department of Biochemistry, Van Yuzuncu Yıl University, Van, Turkey
| | - Turan Yaman
- Faculty of Veterinary, Department of Pathology, Van Yuzuncu Yıl University, Van, Turkey
| | - Ömer Faruk Keleş
- Faculty of Veterinary, Department of Pathology, Van Yuzuncu Yıl University, Van, Turkey
| | - Zabit Yener
- Faculty of Veterinary, Department of Pathology, Van Yuzuncu Yıl University, Van, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Igdır University, Igdır, Turkey
| | - Kemal Ayengin
- Medical Faculty, Department of Pediatric Surgery, Van Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
8
|
Mattila M, Söderström M, Ailanen L, Savontaus E, Savontaus M. The Effects of Neuropeptide Y Overexpression on the Mouse Model of Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2020; 20:328-338. [PMID: 31811615 PMCID: PMC7176599 DOI: 10.1007/s12012-019-09557-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Doxorubicin is a potent anticancer drug with cardiotoxicity hampering its use. Neuropeptide Y (NPY) is the most abundant neuropeptide in the heart and a co-transmitter of the sympathetic nervous system that plays a role in cardiac diseases. The aim of this work was to study the impact of NPY on doxorubicin-induced cardiotoxicity. Transgenic mice overexpressing NPY in noradrenergic neurons (NPY-OEDβH) and wild-type mice were treated with a single dose of doxorubicin. Doxorubicin caused cardiotoxicity in both genotypes as demonstrated by decreased weight gain, tendency to reduced ejection fraction, and changes in the expression of several genes relevant to cardiac pathology. Doxorubicin resulted in a tendency to lower ejection fraction in NPY-OEDβH mice more than in wild-type mice. In addition, gain in the whole body lean mass gain was decreased only in NPY-OEDβH mice, suggesting a more severe impact of doxorubicin in this genotype. The effects of doxorubicin on genes expressed in the heart were similar between NPY-OEDβH and wild-type mice. The results demonstrate that doxorubicin at a relatively low dose caused significant cardiotoxicity. There were differences between NPY-OEDβH and wild-type mice in their responses to doxorubicin that suggest NPY to increase susceptibility to cardiotoxicity. This may point to the therapeutic implications as suggested for NPY system in other cardiovascular diseases.
Collapse
Affiliation(s)
- Minttu Mattila
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Drug Research Doctoral Programme, University of Turku, Turku, Finland
| | - Mirva Söderström
- Department of Pathology, Turku University Hospital and University of Turku, Turku, Finland
| | - Liisa Ailanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eriika Savontaus
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland. .,Clinical Pharmacology, Turku University Hospital, Turku, Finland.
| | - Mikko Savontaus
- Heart Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
9
|
The Morphopathogenetic Aspects of Intraabdominal Adhesions in Children under One Year of Age. ACTA ACUST UNITED AC 2019; 55:medicina55090556. [PMID: 31480453 PMCID: PMC6780280 DOI: 10.3390/medicina55090556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023]
Abstract
Background and Objectives: The morphopathogenesis of adhesions is a complex process, characterized by the accumulation of an extracellular matrix, inflammation and hypoxia. The regulatory role between morphopathogenic factors in adhesions has not yet been defined. The aim was to investigate the appearance of transforming growth factor beta (TGFβ), basic fibroblast growth factor (FGF-2), fibroblast growth factor receptor 1 (FGFR1), protein gene product 9.5 (PGP 9.5), chromogranin A (CgA), interleukin-1 alpha (IL-1α), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-10 (IL-10), tumor necrosis factor alpha (TNFα), matrix metaloproteinase-2 (MMP-2) and matrix metaloproteinase-2 tissue inhibitor (TIMP-2) in intraabdominal adhesions. Materials and Methods: The study material was obtained from 49 patients under one year of age with total or partial bowel obstruction. All factors were detected using immunohistochemistry methods and their relative distribution was evaluated by means of the semiquantitative counting method. Results: Intraabdominal adhesions are characterized by increased TGFβ, FGFR1 and decreased FGF-2, PGP 9.5, IL-1, IL-4, IL-8, TIMP-2 findings. The most significant changes observed were the remodulation of the extracellular matrix, promotion of neoangiogenesis and the maintenance of a prolonged inflammation. Conclusions: The increase in TGFβ, as well as the disbalance between MMP-2 and TIMP-2 proves an increased fibrosis in intraabdominal adhesions. Less detected FGF-2 and more prominent FGR1 findings points out a compensatory receptor stimulation in response to the lacking same factor. The decrease in PGP 9.5 indicate hypoxic injury and proves the stimulation of neoangiogenesis. An unpronounced IL-1 and marked IL-10 finding indicate the local tissue protection reaction, the decrease in IL-4 could be the direct cause of giant cells, but the decrease of IL-8 could confirm a delayed chemotaxis of inflammatory cells.
Collapse
|
10
|
Xu H, Li F. miR‑127 aggravates myocardial failure by promoting the TGF‑β1/Smad3 signaling. Mol Med Rep 2018; 18:4839-4846. [PMID: 30272299 PMCID: PMC6236281 DOI: 10.3892/mmr.2018.9514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/23/2018] [Indexed: 12/24/2022] Open
Abstract
Myocardial failure has a negative impact on the quality of human life. MicroRNA (miR) expression abnormalities lead to the development of many pathological conditions, including myocardial failure, and therefore the present study primarily focused on the investigation of the functions of miR‑127 in the development of myocardial failure. The miR‑127 expression levels in serum samples from patients with myocardial failure were examined. Oil red O staining was used to analyze the characteristics of the myocardium of the patients. Immunohistochemistry was used to detect fatty acid synthase (FASN), stearoyl‑CoA desaturase‑1 (SCD1) and mitochondrial brown fat uncoupling protein 1 (UCP1) protein expression in the myocardium of the patients. Furthermore, C57BL/6J (B6) mice were induced with 15 mg/kg of doxorubicin. Echocardiography was used to detect the histopathological alterations of the myocardial cells by comparison of the myocardial tissues from the myocardial failure animal model and normal C57BL/6 mice. Reverse transcription‑quantitative polymerase chain reaction was used to detect the expression levels of miR‑127 following different induction periods and immunohistochemistry was used to detect the expression of transforming growth factor‑β1 (TGF‑β1) and mothers against decapentaplegic homolog 3 (Smad3). Immunofluorescence was used to detect the expression alterations TGF‑β1/Smad3 when miR‑127 overexpression or inhibition was established. The results of the present study indicated that myocardial failure resulted in an upregulated expression of miR‑127 and severe fat accumulation. FASN, SCD1 and UCP1 were highly expressed in the myocardial failure group compared with the control. Abdominal artery contraction and the ejection fraction were significantly reduced in the DOX‑induced B6 mice. The cardiomyocytes became hypertrophic, and left ventricular systolic pressure and left ventricular maximum ejection pressure were altered following DOX induction in B6 mice. The results confirmed that miR‑127 regulates the expression of TGF‑β1/Smad3. The potential pathological mechanism of the effect of miR‑127 may be based on the upregulation of the TGF‑β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Hainian Xu
- Department of Cardiovascular Internal Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Fengmei Li
- Department of Internal Medicine, Weifang Zuoshan Central Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
11
|
Koutsoumparis A, Vassili A, Bakopoulou A, Ziouta A, Tsiftsoglou AS. Erythropoietin (rhEPOa) promotes endothelial transdifferentiation of stem cells of the apical papilla (SCAP). Arch Oral Biol 2018; 96:96-103. [PMID: 30205239 DOI: 10.1016/j.archoralbio.2018.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/10/2018] [Accepted: 09/01/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) have attracted worldwide attention for their capacity to repair damaged tissue, immunosuppression, ability to differentiate into several cell types and their secretome. Earlier studies have demonstrated their angiogenic potential in vitro and in vivo. However, little is known regarding pro-angiogenic inducers of stable endothelial transdifferentiation of MSCs. Here, we employed human MSCs from the Apical Papilla (SCAP) and investigated whether recombinant human erythropoietin-alpha (rhEPOa) could act as such inducer. DESIGN Cultured SCAP cells were exposed to rhEPOa and assessed for cell growth kinetics, viability and morphology, as well as their capacity to form capillary tubule structures in selected microenvironments. RT-PCR was used to monitor endothelial markers and activation of EPO/EPOR pathway signaling components; while gelatin zymographies to assess activation of MMP-2. RESULTS rhEPOa treatment initially (48 h) accelerated cell proliferation and allowed SCAP to sprout micro-tubular structures. Morphological and biochemical differentiation was accompanied by activation of MMP-2 and upregulation of PECAM-1, VEGFR2, vWF and VE-cadherin/CDH5. SCAP expressed the cognate EPO-R, while rhEPOa-treated SCAP exhibited higher expression of molecules involved in EPO/EPOR pathway (EPOR and JAK2). CONCLUSION rhEPOa is capable of promoting endothelial transdifferentiation of SCAP which may be of clinical value in treating of ischemic disorders.
Collapse
Affiliation(s)
- Anastasios Koutsoumparis
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, GR-54124, Greece
| | - Angelina Vassili
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, GR-54124, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, GR-54124, Greece
| | - Argyro Ziouta
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, GR-54124, Greece
| | - Asterios S Tsiftsoglou
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, GR-54124, Greece.
| |
Collapse
|
12
|
Xu P, Guo W, Jin T, Wang J, Fan D, Hao Z, Jing S, Han C, Du J, Jiang D, Wen S, Wang J. TIMP-2 SNPs rs7342880 and rs4789936 are linked to risk of knee osteoarthritis in the Chinese Han Population. Oncotarget 2017; 8:1166-1176. [PMID: 27901480 PMCID: PMC5352044 DOI: 10.18632/oncotarget.13590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/09/2016] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate whether functional polymorphisms in the tissue inhibitors of metalloproteinase-2 (TIMP-2) gene are associated with susceptibility to knee osteoarthritis (OA) in the Chinese Han population. Six TIMP-2 single nucleotide polymorphisms (SNPs) were assayed using MassARRAY in 300 patients clinically and radiographically diagnosed with knee OA and in 428 controls. Allelic and genotypic frequencies were compared between groups. Logistic regression adjusting for age and gender was used to estimate risk associations between specific genotypes and knee OA by computing odds ratios (ORs) and 95% confidence intervals (95% CIs). We found that allele "A" in rs7342880 was significantly associated with increased risk of knee OA (OR = 1.44, 95%CI = 1.09-1.91, p = 0.035). In addition, in the over-dominant model, rs4789936 correlated with reduced risk of knee OA, adjusting for age and gender (OR = 0.69, 95%CI = 0.49-0.98, p = 0.036). Finally, rs7342880 correlated with increased risk of knee OA in females. This study provides evidence that TIMP-2 is a knee OA susceptibility gene in the Chinese population and a potential diagnostic and preventive marker for the disease.
Collapse
Affiliation(s)
- Pengcheng Xu
- Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia, China
| | - Wen Guo
- Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
- Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi, 710075, China
| | - Jihong Wang
- Department of Hand and Foot Surgery, Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010030, Inner Mongolia Autonomous Region, China
| | - Dongsheng Fan
- Department of Hand and Foot Surgery, Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010030, Inner Mongolia Autonomous Region, China
| | - Zengtao Hao
- Department of Hand and Foot Surgery, Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010030, Inner Mongolia Autonomous Region, China
| | - Shangfei Jing
- Department of Hand and Foot Surgery, Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010030, Inner Mongolia Autonomous Region, China
| | - ChaoQian Han
- Department of Hand and Foot Surgery, Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010030, Inner Mongolia Autonomous Region, China
| | - Jieli Du
- Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia, China
| | - Dong Jiang
- Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia, China
| | - Shuzheng Wen
- Department of Hand and Foot Surgery, Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010030, Inner Mongolia Autonomous Region, China
| | - Jianzhong Wang
- Department of Trauma, Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010030, Inner Mongolia Autonomous Region, China
| |
Collapse
|
13
|
Luo W, Hu L, Li W, Xu G, Xu L, Zhang C, Wang F. Epo inhibits the fibrosis and migration of Müller glial cells induced by TGF-β and high glucose. Graefes Arch Clin Exp Ophthalmol 2016; 254:881-90. [DOI: 10.1007/s00417-016-3290-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/06/2016] [Accepted: 02/08/2016] [Indexed: 12/11/2022] Open
|
14
|
|
15
|
Ji JB, Li XF, Liu L, Wang GZ, Yan XF. Effect of low intensity pulsed ultrasound on expression of TIMP-2 in serum and expression of mmp-13 in articular cartilage of rabbits with knee osteoarthritis. ASIAN PAC J TROP MED 2015; 8:1043-1048. [PMID: 26706677 DOI: 10.1016/j.apjtm.2015.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To study the effect of low intensity pulsed ultrasound (LIPUS) on the expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the serum and expression of matrix metallopeptidase 13 (MMP-13) in the articular cartilage cells of rabbits with knee osteoarthritis (OA). METHODS Inner patellar ligament defect method was used to establish the model of knee OA. Four weeks after the modeling, the arterial blood was drawn from the ear of each rabbit, while ELISA was employed to detect the expression of TIMP-2 in the serum. The chondrocytes were separated from animals in each group and then cultured in vitro. All rabbits were divided into control group, OA model group and OA + LIPUS group. Cells in the control and OA groups were not treated, while cells in the OA + LIPUS group were treated with LIPUS (40 mW/cm(2), 1 time/day). Cells were collected 7 d later and the RNA and total protein were extracted respectively. Real-time PCR and Western blotting were employed to analyze the expression of MMP-13 in chondrocytes at the mRNA and protein level, respectively. RESULTS The success rate of establishment of OA model was 83%. The results of ELISA showed that the content of TIMP-2 in the serum of animals with OA was 22.3%, lower than the one in the control group (P < 0.05). Compared with the normal control group, the expression of TIMP-2 in the OA model group was significantly increased, while the expression of MMP-13 was significantly increased (P < 0.05). After the stimulation of LIPUS, the expression of TIMP-2 and MMP-13 was close to the one in the normal control group. CONCLUSIONS The inner patellar ligament defect method is a mature method to establish the rabbit OA model, with high success rate. The expression of serum TIMP-2 in the OA model group is significantly decreased. LIPUS can up-regulate TIMP-2 and down-regulate MMP-13.
Collapse
Affiliation(s)
- Jing-Bo Ji
- Department of Bone and Joint, Affiliated Qianfoshan Hospital of Shandong University, Ji'nan Shandong, 250014, China; Department of Orthopedics, Liaocheng No.3 Hospital, Liaocheng, Shandong, 252000, China
| | - Xue-Fu Li
- Department of Orthopedics, Liaocheng No.3 Hospital, Liaocheng, Shandong, 252000, China
| | - Lei Liu
- Department of Orthopedics, Liaocheng No.3 Hospital, Liaocheng, Shandong, 252000, China
| | - Guang-Zhong Wang
- Department of Orthopedics, Liaocheng No.3 Hospital, Liaocheng, Shandong, 252000, China
| | - Xin-Feng Yan
- Department of Bone and Joint, Affiliated Qianfoshan Hospital of Shandong University, Ji'nan Shandong, 250014, China.
| |
Collapse
|
16
|
Wang LP, Yang XH, Wang XJ, Li SM, Sun N, Zhang T. Erythropoietin Decreases the Occurrence of Myocardial Fibrosis by Inhibiting the NADPH-ERK-NF-x03BA;B Pathway. Cardiology 2015; 133:97-108. [PMID: 26513353 DOI: 10.1159/000440995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/05/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the protective role of erythropoietin (EPO) against myocardial fibrosis (MF). METHODS Pressure-overloaded rats were established by abdominal aortic constriction, the rats were randomly divided in a double-blind manner into 3 groups (n = 12 for each group): sham-operated rats (sham), operated rats receiving physiological saline (vehicle) and operated rats receiving 4,000 U/kg rhEPO (EPO group). The vehicle and drugs were administered to rats by intraperitoneal injection. In addition, cultured adult rat cardiac fibroblasts (CFs) were utilized to investigate the role of EPO in CF proliferation and collagen secretion. RESULTS After 4 weeks, besides an increase in blood pressure, myocardial hypertrophy, collagen deposition in the myocardium and decreased cardiac function were observed in the pressure-overloaded rats. The expression of NADPH oxidase (Nox2 and Nox4) and inflammatory cytokines (CD45, F4/80 and MCP-1) was also significantly increased. All these alterations were prevented by EPO. TGF-β promoted CF proliferation, collagen secretion, ROS production and Nox2/Nox4 expression, which was inhibited by EPO. In addition, the TGF-β-induced increase of ERK1/2 phosphorylation and NF-x03BA;B expression were attenuated by EPO. CONCLUSION EPO inhibited rat MF induced by pressure overload and improved myocardial function by decreasing CF proliferation and differentiation via inhibition of the NADPH-ERK-NF-x03BA;B pathway.
Collapse
Affiliation(s)
- Li-Ping Wang
- Department of Physiology and Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Science, North China University of Science and Technology, Tangshan, China
| | | | | | | | | | | |
Collapse
|
17
|
Recombinant Human Erythropoietin Protects Myocardial Cells from Apoptosis via the Janus-Activated Kinase 2/Signal Transducer and Activator of Transcription 5 Pathway in Rats with Epilepsy. Curr Ther Res Clin Exp 2015; 77:90-8. [PMID: 26649078 PMCID: PMC4644243 DOI: 10.1016/j.curtheres.2015.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To investigate the potential mechanisms underlying the protective effects of recombinant human erythropoietin (rhEPO) and carbamylated EPO (CEPO) against myocardial cell apoptosis in epilepsy. METHODS Rats were given an intra-amygdala injection of kainic acid to induce epilepsy. Groups of rats were treated with rhEPO or CEPO before induction of epilepsy, whereas additional rats were given a caudal vein injection of AG490, a selective inhibitor of Janus kinase 2 (JAK2). At different time points after seizure onset, electroencephalogram changes were recorded, and myocardium samples were taken for the detection of myocardial cell apoptosis and expression of JAK2, signal transducer and activator of transcription 5 (STAT5), caspase-3, and bcl-xl mRNAs and proteins. RESULTS Induction of epilepsy significantly enhanced myocardial cell apoptosis and upregulated the expression of caspase-3 and bcl-xl proteins and JAK2 and STAT5a at both the mRNA and protein levels. Pretreatment with either rhEPO or CEPO reduced the number of apoptotic cells, upregulated bcl-xl expression, and downregulated caspase-3 expression in the myocardium of epileptic rats. Both myocardial JAK2 and STAT5a mRNAs, as well as phosphorylated species of JAK2 and STAT5a, were upregulated in epileptic rats in response to rhEPO-but not to CEPO-pretreatment. AG490 treatment increased apoptosis, upregulated caspase-3 protein expression, and downregulated bcl-xl protein expression in the myocardium of epileptic rats. CONCLUSIONS These results indicate that myocardial cell apoptosis may contribute to myocardial injury in epilepsy. EPO protects myocardial cells from apoptosis via the JAK2/STAT5 pathway in rats with experimental epilepsy, whereas CEPO exerts antiapoptotic activity perhaps via a pathway independent of JAK2/STAT5 signaling.
Collapse
|