1
|
Formiga F, Nuñez J, Castillo Moraga MJ, Cobo Marcos M, Egocheaga MI, García-Prieto CF, Trueba-Sáiz A, Matalí Gilarranz A, Fernández Rodriguez JM. Diagnosis of heart failure with preserved ejection fraction: a systematic narrative review of the evidence. Heart Fail Rev 2024; 29:179-189. [PMID: 37861854 PMCID: PMC10904432 DOI: 10.1007/s10741-023-10360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a common condition in clinical practice, affecting more than half of patients with HF. HFpEF is associated with morbidity and mortality and with considerable healthcare resource utilization and costs. Therefore, early diagnosis is crucial to facilitate prompt management, particularly initiation of sodium-glucose co-transporter 2 inhibitors. Although European guidelines define HFpEF as the presence of symptoms with or without signs of HF, left ventricular EF ≥ 50%, and objective evidence of cardiac structural and/or functional abnormalities, together with elevated natriuretic peptide levels, the diagnosis of HFpEF remains challenging. First, there is no clear consensus on how HFpEF should be defined. Furthermore, diagnostic tools, such as natriuretic peptide levels and resting echocardiogram findings, are significantly limited in the diagnosis of HFpEF. As a result, some patients are overdiagnosed (i.e., elderly people with comorbidities that mimic HF), although in other cases, HFpEF is overlooked. In this manuscript, we perform a systematic narrative review of the diagnostic approach to patients with HFpEF. We also propose a comprehensible algorithm that can be easily applied in daily clinical practice and could prove useful for confirming or ruling out a diagnosis of HFpEF.
Collapse
Affiliation(s)
- Francesc Formiga
- Servicio de Medicina Interna, Hospital Universitari de Bellvitge, Barcelona, Spain.
| | - Julio Nuñez
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia-España, Valencia, Spain
- Departamento de Medicina, Universidad de Valencia, Fundación de Investigación INCLIVA, Valencia, Spain
| | | | - Marta Cobo Marcos
- Servicio de Cardiología, Hospital Universitario Puerta de Hierro Majadahonda (IDIPHISA), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Angel Trueba-Sáiz
- Medical Affairs Department, Eli Lilly and Company España, Alcobendas, Madrid, Spain
| | | | - José María Fernández Rodriguez
- Área Cardiorrenometabólica del Servicio de Medicina Interna del Hospital Universitario Ramon y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
2
|
Wei H, Zhao M, Wu J, Li C, Huang M, Gao J, Zhang Q, Ji L, Wang Y, Zhao C, Dong E, Zheng L, Wang DW. Association of Systemic Trimethyllysine With Heart Failure With Preserved Ejection Fraction and Cardiovascular Events. J Clin Endocrinol Metab 2022; 107:e4360-e4370. [PMID: 36062477 PMCID: PMC9693784 DOI: 10.1210/clinem/dgac519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Carnitine has been associated with cardiac energy metabolism and heart failure, but the association between its precursors-trimethyllysine (TML) and γ-butyrobetaine (GBB)-and heart failure with preserved ejection fraction (HFpEF) remains unclear. OBJECTIVE To evaluate the relationship between TML-related metabolites and HFpEF in an Asian population. METHODS The cross-sectional component of this study examined the association between plasma TML-related metabolites and HFpEF, while a prospective cohort design was applied to examine the association with incident cardiovascular events in HFpEF. Included in the study were 1000 individuals who did not have heart failure (non-HF) and 1413 patients with HFpEF. Liquid chromatography mass spectrometry was used to assess plasma carnitine, GBB, TML and trimethylamine-N-oxide (TMAO) concentrations. RESULTS Plasma GBB and TML were both elevated in patients with HFpEF. After adjusting for traditional risk factors and renal function, TML, but not GBB, was significantly associated with HFpEF. The odds ratio (OR) for the fourth vs first quartile of TML was 1.57 (95% CI 1.09-2.27; P-trend < .01). The OR for each SD increment of log-TML was 1.26 (95% CI 1.08-1.47). Plasma TMAO (P-interaction = 0.024) and estimated glomerular filtration rate (P-interaction = 0.024) modified the TML-HFpEF association. The addition of TML improved the diagnostic value under the multivariable model. In the prospective study of patients with HFpEF, higher plasma TML was associated with increased risk of cardiovascular events. CONCLUSION Plasma TML concentrations are positively associated with HFpEF, and higher plasma TML indicates increased risk of cardiovascular events.
Collapse
Affiliation(s)
| | | | - Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chenze Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Man Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jianing Gao
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- The Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
| | - Qi Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- The Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
| | - Liang Ji
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- The Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chunxia Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
- The Institute of Cardiovascular Sciences, Peking University, Beijing 100191, China
| | - Lemin Zheng
- Correspondence: Dao Wen Wang, MD, PhD, Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan 430030, PRC. ; or Lemin Zheng, PhD, The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China.
| | - Dao Wen Wang
- Correspondence: Dao Wen Wang, MD, PhD, Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan 430030, PRC. ; or Lemin Zheng, PhD, The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Wang Y, Wu J, Wang D, Yang R, Liu Q. Traditional Chinese Medicine Targeting Heat Shock Proteins as Therapeutic Strategy for Heart Failure. Front Pharmacol 2022; 12:814243. [PMID: 35115946 PMCID: PMC8804377 DOI: 10.3389/fphar.2021.814243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) is the terminal stage of multifarious heart diseases and is responsible for high hospitalization rates and mortality. Pathophysiological mechanisms of HF include cardiac hypertrophy, remodeling and fibrosis resulting from cell death, inflammation and oxidative stress. Heat shock proteins (HSPs) can ameliorate folding of proteins, maintain protein structure and stability upon stress, protect the heart from cardiac dysfunction and ameliorate apoptosis. Traditional Chinese medicine (TCM) regulates expression of HSPs and has beneficial therapeutic effect in HF. In this review, we summarized the function of HSPs in HF and the role of TCM in regulating expression of HSPs. Studying the regulation of HSPs by TCM will provide novel ideas for the study of the mechanism and treatment of HF.
Collapse
Affiliation(s)
- Yanchun Wang
- Shenyang the Tenth People’s Hospital, Shenyang, China
| | - Junxuan Wu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- *Correspondence: Qing Liu, ; Dawei Wang, ; Rongyuan Yang,
| | - Rongyuan Yang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, China
- *Correspondence: Qing Liu, ; Dawei Wang, ; Rongyuan Yang,
| | - Qing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, China
- *Correspondence: Qing Liu, ; Dawei Wang, ; Rongyuan Yang,
| |
Collapse
|
4
|
Evaluation of the diagnostic accuracy of current biomarkers in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Arch Cardiovasc Dis 2021; 114:793-804. [PMID: 34802963 DOI: 10.1016/j.acvd.2021.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND A number of circulating biomarkers are currently utilized for the diagnosis of chronic heart failure with preserved ejection fraction (HFpEF). However, due to HFpEF heterogeneity, the accuracy of these biomarkers remains unclear. AIMS This study aimed to systematically determine the diagnostic accuracy of currently available biomarkers for chronic HFpEF. METHODS PubMed, Web of Science, MEDLINE and SCOPUS databases were searched systematically to identify studies assessing the diagnostic accuracy of biomarkers of chronic HFpEF with left ventricular ejection fraction (LVEF) ≥50%. All included studies were independently assessed for quality and relevant information was extracted. Random-effects models were used to estimate the pooled diagnostic accuracy of HFpEF biomarkers. RESULTS The search identified 6145 studies, of which 19 were included. Four biomarkers were available for meta-analysis. The pooled sensitivity of B-type natriuretic peptide (BNP) (0.787, 95% confidence interval [CI] 0.719-0.842) was higher than that of N-terminal pro-BNP (NT-proBNP) (0.696, 95% CI 0.599-0.779) in chronic HFpEF diagnosis. However, NT-proBNP showed improved specificity (0.882, 95% CI 0.778-0.941) compared to BNP (\0.796, 95% CI 0.672-0.882). Galectin-3 (Gal-3) exhibited a reliable diagnostic adequacy for HFpEF (sensitivity 0.760, 95% CI 0.631-0.855; specificity 0.803, 95% CI 0.667-0.893). However, suppression of tumorigenesis-2 (ST2) displayed limited diagnostic performance for chronic HFpEF diagnosis (sensitivity 0.636, 95% CI 0.465-0.779; specificity 0.595, 95% CI 0.427-0.743). CONCLUSION NT-proBNP and BNP appear to be the most reliable biomarkers in chronic HFpEF with NT-proBNP showing higher specificity and BNP showing higher sensitivity. Although Gal-3 appears more reliable than ST2 in HFpEF diagnosis, the conclusions are limited as only three studies were included in this meta-analysis.
Collapse
|
5
|
Hong Y, Wang Z, Rao Z, Wan J, Ling X, Zheng Q. Changes in Expressions of HSP27, HSP70, and Soluble Glycoprotein in Heart Failure Rats Complicated with Pulmonary Edema and Correlations with Cardiopulmonary Functions. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6733341. [PMID: 34337047 PMCID: PMC8315849 DOI: 10.1155/2021/6733341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022]
Abstract
The study is aimed at investigating the changes in expressions of heat shock protein 27 (HSP27), HSP70, and soluble glycoprotein (SGP) in heart failure (HF) rats complicated with pulmonary edema and exploring their potential correlations with cardiopulmonary functions. The rat model of HF was established, and the rats were divided into HF model group (model group, n = 15) and normal group (n = 15). After successful modeling, MRI and ECG were applied to detect the cardiac function indexes of the rats. The myocardial function indexes were determined, the injury of myocardial tissues was observed via hematoxylin and eosin (HE) staining, and the content of myeloperoxidase (MPO), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α) in the blood was measured. The partial pressure of oxygen (PaO2) and oxygenation index (OI) were observed, and the airway resistance and lung compliance were examined. Moreover, quantitative polymerase chain reaction (qPCR) and Western blotting assay were performed to detect the gene and protein expression levels of HSP27, HSP70, and SGP130. The levels of serum creatine kinase (CK), creatine (Cr), and blood urea nitrogen (BUN) were increased markedly in model group (p < 0.05). Model group had notably decreased fractional shortening (FS) and ejection fraction (EF) compared with normal group (p < 0.05), while the opposite results of left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) were detected. In model group, the content of serum MPO, MMP-9, and TNF-α was raised remarkably (p < 0.05), OI and PaO2 were reduced notably (p < 0.05), the airway resistance was increased (p < 0.05), and the lung compliance was decreased (p < 0.05). Obviously elevated gene and protein expression levels of HSP27, HSP70, and SGP130 were detected in model group (p < 0.05). The expressions of HSP27, HSP70, and SGP130 are increased in HF rats complicated with pulmonary edema, seriously affecting the cardiopulmonary functions of the rats.
Collapse
Affiliation(s)
- Yingcai Hong
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Zheng Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Zhanpeng Rao
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Jun Wan
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Xie'an Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Qijun Zheng
- Department of Cardiac Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| |
Collapse
|
6
|
Remmelzwaal S, van Ballegooijen AJ, Schoonmade LJ, Dal Canto E, Handoko ML, Henkens MTHM, van Empel V, Heymans SRB, Beulens JWJ. Natriuretic peptides for the detection of diastolic dysfunction and heart failure with preserved ejection fraction-a systematic review and meta-analysis. BMC Med 2020; 18:290. [PMID: 33121502 PMCID: PMC7599104 DOI: 10.1186/s12916-020-01764-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND An overview of the diagnostic performance of natriuretic peptides (NPs) for the detection of diastolic dysfunction (DD) and heart failure with preserved ejection fraction (HFpEF), in a non-acute setting, is currently lacking. METHODS We performed a systematic literature search in PubMed and Embase.com (May 13, 2019). Studies were included when they (1) reported diagnostic performance measures, (2) are for the detection of DD or HFpEF in a non-acute setting, (3) are compared with a control group without DD or HFpEF or with patients with heart failure with reduced ejection fraction, (4) are in a cross-sectional design. Two investigators independently assessed risk of bias of the included studies according to the QUADAS-2 checklist. Results were meta-analysed when three or more studies reported a similar diagnostic measure. RESULTS From 11,728 titles/abstracts, we included 51 studies. The meta-analysis indicated a reasonable diagnostic performance for both NPs for the detection of DD and HFpEF based on AUC values of approximately 0.80 (0.73-0.87; I2 = 86%). For both NPs, sensitivity was lower than specificity for the detection of DD and HFpEF: approximately 65% (51-85%; I2 = 95%) versus 80% (70-90%; I2 = 97%), respectively. Both NPs have adequate ability to rule out DD: negative predictive value of approximately 85% (78-93%; I2 = 95%). The ability of both NPs to prove DD is lower: positive predictive value of approximately 60% (30-90%; I2 = 99%). CONCLUSION The diagnostic performance of NPs for the detection of DD and HFpEF is reasonable. However, they may be used to rule out DD or HFpEF, and not for the diagnosis of DD or HFpEF.
Collapse
Affiliation(s)
- Sharon Remmelzwaal
- Department of Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, VU University Medical Centre, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands.
| | - Adriana J van Ballegooijen
- Department of Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, VU University Medical Centre, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands.,Department of Nephrology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Elisa Dal Canto
- Department of Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, VU University Medical Centre, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands
| | - M Louis Handoko
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michiel T H M Henkens
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Joline W J Beulens
- Department of Epidemiology & Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, VU University Medical Centre, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands.,Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Henkens MTHM, Remmelzwaal S, Robinson EL, van Ballegooijen AJ, Barandiarán Aizpurua A, Verdonschot JAJ, Raafs AG, Weerts J, Hazebroek MR, Sanders-van Wijk S, Handoko ML, den Ruijter HM, Lam CSP, de Boer RA, Paulus WJ, van Empel VPM, Vos R, Brunner-La Rocca HP, Beulens JWJ, Heymans SRB. Risk of bias in studies investigating novel diagnostic biomarkers for heart failure with preserved ejection fraction. A systematic review. Eur J Heart Fail 2020; 22:1586-1597. [PMID: 32592317 PMCID: PMC7689920 DOI: 10.1002/ejhf.1944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022] Open
Abstract
Aim Diagnosing heart failure with preserved ejection fraction (HFpEF) in the non‐acute setting remains challenging. Natriuretic peptides have limited value for this purpose, and a multitude of studies investigating novel diagnostic circulating biomarkers have not resulted in their implementation. This review aims to provide an overview of studies investigating novel circulating biomarkers for the diagnosis of HFpEF and determine their risk of bias (ROB). Methods and results A systematic literature search for studies investigating novel diagnostic HFpEF circulating biomarkers in humans was performed up until 21 April 2020. Those without diagnostic performance measures reported, or performed in an acute heart failure population were excluded, leading to a total of 28 studies. For each study, four reviewers determined the ROB within the QUADAS‐2 domains: patient selection, index test, reference standard, and flow and timing. At least one domain with a high ROB was present in all studies. Use of case‐control/two‐gated designs, exclusion of difficult‐to‐diagnose patients, absence of a pre‐specified cut‐off value for the index test without the performance of external validation, the use of inappropriate reference standards and unclear timing of the index test and/or reference standard were the main bias determinants. Due to the high ROB and different patient populations, no meta‐analysis was performed. Conclusion The majority of current diagnostic HFpEF biomarker studies have a high ROB, reducing the reproducibility and the potential for clinical care. Methodological well‐designed studies with a uniform reference diagnosis are urgently needed to determine the incremental value of circulating biomarkers for the diagnosis of HFpEF.
Collapse
Affiliation(s)
- Michiel T H M Henkens
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Sharon Remmelzwaal
- Department of Epidemiology and Biostatistics, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma L Robinson
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Adriana J van Ballegooijen
- Department of Epidemiology and Biostatistics, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anne G Raafs
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Jerremy Weerts
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Mark R Hazebroek
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Sandra Sanders-van Wijk
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - M Louis Handoko
- Department of Cardiology, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carolyn S P Lam
- National Heart Centre Singapore, Singapore, Singapore.,Duke-National University of Singapore, Singapore, Singapore.,Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Walter J Paulus
- Department of Physiology, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands.,Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Rein Vos
- Department of Methodology and Statistics, Maastricht University, Maastricht, The Netherlands
| | - Hans-Peter Brunner-La Rocca
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Biostatistics, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands.,Netherlands Heart Institute (ICIN), Utrecht, The Netherlands.,Department of Cardiovascular Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Cuvelliez M, Vandewalle V, Brunin M, Beseme O, Hulot A, de Groote P, Amouyel P, Bauters C, Marot G, Pinet F. Circulating proteomic signature of early death in heart failure patients with reduced ejection fraction. Sci Rep 2019; 9:19202. [PMID: 31844116 PMCID: PMC6914779 DOI: 10.1038/s41598-019-55727-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains a main cause of mortality worldwide. Risk stratification of patients with systolic chronic HF is critical to identify those who may benefit from advanced HF therapies. The aim of this study is to identify plasmatic proteins that could predict the early death (within 3 years) of HF patients with reduced ejection fraction hospitalized in CHRU de Lille. The subproteome targeted by an aptamer-based technology, the Slow Off-rate Modified Aptamer (SOMA) scan assay of 1310 proteins, was profiled in blood samples from 168 HF patients, and 203 proteins were significantly modulated between patients who died of cardiovascular death and patients who were alive after 3 years of HF evaluation (Wilcoxon test, FDR 5%). A molecular network was built using these 203 proteins, and the resulting network contained 2281 molecules assigned to 34 clusters annotated to biological pathways by Gene Ontology. This network model highlighted extracellular matrix organization as the main mechanism involved in early death in HF patients. In parallel, an adaptive Least Absolute Shrinkage and Selection Operator (LASSO) was performed on these 203 proteins, and six proteins were selected as candidates to predict early death in HF patients: complement C3, cathepsin S and F107B were decreased and MAPK5, MMP1 and MMP7 increased in patients who died of cardiovascular causes compared with patients living 3 years after HF evaluation. This proteomic signature of 6 circulating plasma proteins allows the identification of systolic HF patients with a risk of early death.
Collapse
Affiliation(s)
- Marie Cuvelliez
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Vincent Vandewalle
- Univ. Lille, CHU Lille, Inria Lille Nord-Europe, EA2694 - MODAL - MOdels for Data Analysis and Learning, F-59000, Lille, France.,Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Maxime Brunin
- Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Olivia Beseme
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Audrey Hulot
- Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Pascal de Groote
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Philippe Amouyel
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Christophe Bauters
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Guillemette Marot
- Univ. Lille, CHU Lille, Inria Lille Nord-Europe, EA2694 - MODAL - MOdels for Data Analysis and Learning, F-59000, Lille, France.,Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Florence Pinet
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France. .,FHU REMOD-HF, Lille, France.
| |
Collapse
|
9
|
Ferreira JP, Duarte K, Woehrle H, Cowie MR, Angermann C, d'Ortho MP, Erdmann E, Levy P, Simonds AK, Somers VK, Teschler H, Wegscheider K, Bresso E, Dominique-Devignes M, Rossignol P, Koenig W, Zannad F. Bioprofiles and mechanistic pathways associated with Cheyne-Stokes respiration: insights from the SERVE-HF trial. Clin Res Cardiol 2019; 109:881-891. [PMID: 31784904 DOI: 10.1007/s00392-019-01578-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The SERVE-HF trial included patients with heart failure and reduced ejection fraction (HFrEF) with sleep-disordered breathing, randomly assigned to treatment with Adaptive-Servo Ventilation (ASV) or control. The primary outcome was the first event of death from any cause, lifesaving cardiovascular intervention, or unplanned hospitalization for worsening heart failure. A subgroup analysis of the SERVE-HF trial suggested that patients with Cheyne-Stokes respiration (CSR) < 20% (low CSR) experienced a beneficial effect from ASV, whereas in patients with CSR ≥ 20% ASV might have been harmful. Identifying the proteomic signatures and the underlying mechanistic pathways expressed in patients with CSR could help generating hypothesis for future research. METHODS Using a large set of circulating protein-biomarkers (n = 276, available in 749 patients; 57% of the SERVE-HF population) we sought to investigate the proteins associated with CSR and to study the underlying mechanisms that these circulating proteins might represent. RESULTS The mean age was 69 ± 10 years and > 90% were male. Patients with CSR < 20% (n = 139) had less apnoea-hypopnea index (AHI) events per hour and less oxygen desaturation. Patients with CSR < 20% might have experienced a beneficial effect of ASV treatment (primary outcome HR [95% CI] = 0.55 [0.34-0.88]; p = 0.012), whereas those with CSR ≥ 20% might have experienced a detrimental effect of ASV treatment (primary outcome HR [95% CI] = 1.39 [1.09-1.76]; p = 0.008); p for interaction = 0.001. Of the 276 studied biomarkers, 8 were associated with CSR (after adjustment and with a FDR1%-corrected p value). For example, higher PAR-1 and ITGB2 levels were associated with higher odds of having CSR < 20%, whereas higher LOX-1 levels were associated with higher odds of CSR ≥ 20%. Signalling, metabolic, haemostatic and immunologic pathways underlie the expression of these biomarkers. CONCLUSION We identified proteomic signatures that may represent underlying mechanistic pathways associated with patterns of CSR in HFrEF. These hypothesis-generating findings require further investigation towards better understanding of CSR in HFrEF. SUMMARY OF THE FINDINGS PAR-1 proteinase-activated receptor 1, ADM adrenomedullin, HSP-27 heat shock protein-27, ITGB2 integrin beta 2, GLO1 glyoxalase 1, ENRAGE/S100A12 S100 calcium-binding protein A12, LOX-1 lectin-like LDL receptor 1, ADAM-TS13 disintegrin and metalloproteinase with a thrombospondin type 1 motif, member13 also known as von Willebrand factor-cleaving protease.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Centre d'Investigation Clinique Inserm, CHU, Institut Lorrain du Coeur et des Vaisseaux, Université de Lorraine, INSERM CIC-P 1433, CHRU de Nancy, INSERM U1116, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), 4, rue du Morvan, 54500, Vandoeuvre-les-Nancy, France
| | - Kévin Duarte
- Centre d'Investigation Clinique Inserm, CHU, Institut Lorrain du Coeur et des Vaisseaux, Université de Lorraine, INSERM CIC-P 1433, CHRU de Nancy, INSERM U1116, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), 4, rue du Morvan, 54500, Vandoeuvre-les-Nancy, France
| | - Holger Woehrle
- ResMed Science Center, ResMed Germany Inc, Martinsried, Germany
| | | | - Christiane Angermann
- Department of Medicine and Comprehensive Heart Failure Center, University Hospital and University of Würzburg, Würzburg, Germany
| | - Marie-Pia d'Ortho
- University Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, Explorations Fonctionnelles, DHU FIRE, AP-HP, Paris, France
| | | | - Patrick Levy
- University of Grenoble Alpes, Inserm, HP2 lab, Grenoble, France
| | | | | | - Helmut Teschler
- Department of Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karl Wegscheider
- Department of Medical Biometry and Epidemiology, University Medical Center Eppendorf, Hamburg, Germany
| | - Emmanuel Bresso
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, 54500, France
| | | | - Patrick Rossignol
- Centre d'Investigation Clinique Inserm, CHU, Institut Lorrain du Coeur et des Vaisseaux, Université de Lorraine, INSERM CIC-P 1433, CHRU de Nancy, INSERM U1116, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), 4, rue du Morvan, 54500, Vandoeuvre-les-Nancy, France
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Faiez Zannad
- Centre d'Investigation Clinique Inserm, CHU, Institut Lorrain du Coeur et des Vaisseaux, Université de Lorraine, INSERM CIC-P 1433, CHRU de Nancy, INSERM U1116, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), 4, rue du Morvan, 54500, Vandoeuvre-les-Nancy, France.
| |
Collapse
|
10
|
Pockley AG, Henderson B. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0522. [PMID: 29203707 DOI: 10.1098/rstb.2016.0522] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory 'danger signals' for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Brian Henderson
- Division of Microbial Diseases, UCL Eastman Dental Institute, London WC1X 8LD, UK
| |
Collapse
|
11
|
Altara R, Zouein FA, Brandão RD, Bajestani SN, Cataliotti A, Booz GW. In Silico Analysis of Differential Gene Expression in Three Common Rat Models of Diastolic Dysfunction. Front Cardiovasc Med 2018; 5:11. [PMID: 29556499 PMCID: PMC5850854 DOI: 10.3389/fcvm.2018.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Standard therapies for heart failure with preserved ejection fraction (HFpEF) have been unsuccessful, demonstrating that the contribution of the underlying diastolic dysfunction pathophysiology differs from that of systolic dysfunction in heart failure and currently is far from being understood. Complicating the investigation of HFpEF is the contribution of several comorbidities. Here, we selected three established rat models of diastolic dysfunction defined by three major risk factors associated with HFpEF and researched their commonalities and differences. The top differentially expressed genes in the left ventricle of Dahl salt sensitive (Dahl/SS), spontaneous hypertensive heart failure (SHHF), and diabetes 1 induced HFpEF models were derived from published data in Gene Expression Omnibus and used for a comprehensive interpretation of the underlying pathophysiological context of each model. The diversity of the underlying transcriptomic of the heart of each model is clearly observed by the different panel of top regulated genes: the diabetic model has 20 genes in common with the Dahl/SS and 15 with the SHHF models. Advanced analytics performed in Ingenuity Pathway Analysis (IPA®) revealed that Dahl/SS heart tissue transcripts triggered by upstream regulators lead to dilated cardiomyopathy, hypertrophy of heart, arrhythmia, and failure of heart. In the heart of SHHF, a total of 26 genes were closely linked to cardiovascular disease including cardiotoxicity, pericarditis, ST-elevated myocardial infarction, and dilated cardiomyopathy. IPA Upstream Regulator analyses revealed that protection of cardiomyocytes is hampered by inhibition of the ERBB2 plasma membrane-bound receptor tyrosine kinases. Cardioprotective markers such as natriuretic peptide A (NPPA), heat shock 27 kDa protein 1 (HSPB1), and angiogenin (ANG) were upregulated in the diabetes 1 induced model; however, the model showed a different underlying mechanism with a majority of the regulated genes involved in metabolic disorders. In conclusion, our findings suggest that multiple mechanisms may contribute to diastolic dysfunction and HFpEF, and thus drug therapies may need to be guided more by phenotypic characteristics of the cardiac remodeling events than by the underlying molecular processes.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fouad A Zouein
- Faculty of Medicine, Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Rita Dias Brandão
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Saeed N Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
12
|
Traxler D, Lainscak M, Simader E, Ankersmit HJ, Jug B. Heat shock protein 27 acts as a predictor of prognosis in chronic heart failure patients. Clin Chim Acta 2017; 473:127-132. [DOI: 10.1016/j.cca.2017.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
|
13
|
Drum CL, Tan WKY, Chan SP, Pakkiri LS, Chong JPC, Liew OW, Ng TP, Ling LH, Sim D, Leong KTG, Yeo DPS, Ong HY, Jaufeerally F, Wong RCC, Chai P, Low AF, Davidsson P, Liljeblad M, Söderling AS, Gan LM, Bhat RV, Purnamawati K, Lam CSP, Richards AM. Thymosin Beta-4 Is Elevated in Women With Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2017; 6:JAHA.117.005586. [PMID: 28611096 PMCID: PMC5669175 DOI: 10.1161/jaha.117.005586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thymosin beta-4 (TB4) is an X-linked gene product with cardioprotective properties. Little is known about plasma concentration of TB4 in heart failure (HF), and its relationship with other cardiovascular biomarkers. We sought to evaluate circulating TB4 in HF patients with preserved (HFpEF) or reduced (HFrEF) ejection fraction compared to non-HF controls. METHODS AND RESULTS TB4 was measured using a liquid chromatography and mass spectrometry assay in age- and sex-matched HFpEF (n=219), HFrEF (n=219) patients, and controls (n=219) from a prospective nationwide study. Additionally, a 92-marker multiplex proximity extension assay was measured to identify biomarker covariates. Compared with controls, plasma TB4 was elevated in HFpEF (985 [421-1723] ng/mL versus 1401 [720-2379] ng/mL, P<0.001), but not in HFrEF (1106 [556-1955] ng/mL, P=0.642). Stratifying by sex, only women (1623 [1040-2625] ng/mL versus 942 [386-1891] ng/mL, P<0.001), but not men (1238.5 [586-1967] ng/mL versus 1004 [451-1538] ng/mL, P=1.0), had significantly elevated TB4 in the setting of HFpEF. Adjusted for New York Heart Association class, N-terminal pro B-type natriuretic peptide, age, and myocardial infarction, hazard ratio to all-cause mortality is significantly higher in women with elevated TB4 (1.668, P=0.036), but not in men (0.791, P=0.456) with HF. TB4 is strongly correlated with a cluster of 7 markers from the proximity extension assay panel, which are either X-linked, regulated by sex hormones, or involved with NF-κB signaling. CONCLUSIONS We show that plasma TB4 is elevated in women with HFpEF and has prognostic information. Because TB4 can preserve EF in animal studies of cardiac injury, the relation of endogenous, circulating TB4 to X chromosome biology and differential outcomes in female heart disease warrants further study.
Collapse
Affiliation(s)
- Chester L Drum
- Cardiovascular Research Institute, National University Health System, Singapore .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore
| | - Warren K Y Tan
- Cardiovascular Research Institute, National University Health System, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Siew-Pang Chan
- Cardiovascular Research Institute, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Mathematics & Statistics, College of Science, Health & Engineering, La Trobe University, Melbourne, Australia
| | | | - Jenny P C Chong
- Cardiovascular Research Institute, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Oi-Wah Liew
- Cardiovascular Research Institute, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tze-Pin Ng
- Cardiovascular Research Institute, National University Health System, Singapore.,Department of Psychological Medicine, National University of Singapore, Singapore
| | - Lieng-Hsi Ling
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,National University Heart Centre Singapore, Singapore
| | - David Sim
- National Heart Centre Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | | | | | - Hean-Yee Ong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Cardiology, Khoo Teck Puat Hospital, Singapore
| | - Fazlur Jaufeerally
- Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | | | - Ping Chai
- National University Heart Centre Singapore, Singapore
| | - Adrian F Low
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,National University Heart Centre Singapore, Singapore
| | - Pia Davidsson
- Innovative Medicines & Early Development, Cardiovascular & Metabolic Diseases iMed, AstraZeneca R&D, Gothenburg, Sweden
| | - Mathias Liljeblad
- Innovative Medicines & Early Development, Cardiovascular & Metabolic Diseases iMed, AstraZeneca R&D, Gothenburg, Sweden
| | - Ann-Sofi Söderling
- Innovative Medicines & Early Development, Cardiovascular & Metabolic Diseases iMed, AstraZeneca R&D, Gothenburg, Sweden
| | - Li-Ming Gan
- Innovative Medicines & Early Development, Cardiovascular & Metabolic Diseases iMed, AstraZeneca R&D, Gothenburg, Sweden
| | - Ratan V Bhat
- Innovative Medicines & Early Development, Cardiovascular & Metabolic Diseases iMed, AstraZeneca R&D, Gothenburg, Sweden
| | - Kristy Purnamawati
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore
| | - Carolyn S P Lam
- National Heart Centre Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, National University Health System, Singapore .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Christchurch Heart Institute, University of Otago, New Zealand
| |
Collapse
|
14
|
Interleukin-6 "Trans-Signaling" and Ischemic Vascular Disease: The Important Role of Soluble gp130. Mediators Inflamm 2017; 2017:1396398. [PMID: 28250574 PMCID: PMC5307001 DOI: 10.1155/2017/1396398] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
Inflammation plays a major role in the onset of cardiovascular disease (CVD). Interleukine-6 (IL-6) is a multifunctional cytokine involved both in the beneficial acute inflammatory response and in the detrimental chronic low-grade systemic inflammation. Large genetic human studies, using Mendelian randomization approaches, have clearly showed that IL-6 pathway is causally involved in the onset of myocardial infarction. At the same time, IL-6 pathway is divided into two arms: classic signaling (effective in hepatocytes and leukocytes) and trans-signaling (with ubiquitous activity). Trans-signaling is known to be inhibited by the circulating soluble glycoprotein 130 (sgp130). In animal and in vitro models, trans-signaling inhibition with sgp130 antibody clearly shows a beneficial effect on inflammatory disease and atherosclerosis. Conversely, epidemiological data report inconsistent results between sgp130 levels and CV risk factors as well as CV outcome. We have reviewed the literature to understand the role of sgp130 and to find the evidence in favor of or against a possible clinical application of sgp130 treatment in the prevention of cardiovascular disease.
Collapse
|