1
|
Fan J, Zheng S, Wang M, Yuan X. The critical roles of caveolin-1 in lung diseases. Front Pharmacol 2024; 15:1417834. [PMID: 39380904 PMCID: PMC11458383 DOI: 10.3389/fphar.2024.1417834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been implicated in the mediation of cellular processes by interacting with a variety of signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-mediated internalization and regulation of signaling molecules participate in the physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFβ/Smad, and eNOS/NO signaling pathways have been involved in the regulatory effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs indicate that Cav-1 can be a potential target for the treatment of lung diseases. A Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In this article, we mainly discuss the structure of Cav-1 and its critical roles in lung diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Sun G, Zhao F, Feng Y, Liu F, Liu X, Jiang Y, Gao Y, Hu J, Zhou F, Yang Y, Du Z, Zhu C, Liu B. Exosomes derived from hypoxic alveolar epithelial cells promote the phenotypic transformation of pulmonary artery smooth muscle cells via the Rap1 pathway. Exp Lung Res 2024; 50:160-171. [PMID: 39287558 DOI: 10.1080/01902148.2024.2398994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Background: Hypoxic pulmonary hypertension (HPH) is one of the important pathophysiological changes in chronic pulmonary heart disease. Hypoxia promotes the phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs). Extracellular exosomes regulate vascular smooth muscle cell (VSMC) phenotypic switch. Aim: Given the importance of exosomes and alveolar epithelial cells (AECs) in HPH, the present study aimed to address the issue of whether AEC-derived exosomes promote HPH by triggering PASMC phenotypic switch. Methods: Cell Counting Kit-8 (CCK-8), TRITC-phalloidin staining, and Western blotting were used to examine the effects of AEC-derived exosomes on cell proliferation, intracellular actin backbone distribution, and expression of phenotypic marker proteins in PASMCs. Transcriptomics sequencing was used to analyze differentially expressed genes (DEGs) between groups. Results: Hypoxia-induced exosomes (H-exos) could promote the proliferation of PASMCs, cause the reduction of cellular actin microfilaments, promote the expression of synthetic marker proteins (ELN and OPN), reduce the expression of contractile phenotypic marker proteins (SM22-α and α-SMA), and induce the phenotypic transformation of PASMCs. Transcriptomics sequencing analysis showed that the Rap1 signaling pathway was involved in the phenotypic transformation of PASMCs induced by H-exos. Conclusion: The present study identified that hypoxia-induced AEC-derived exosomes promote the phenotypic transformation of PASMCs and its mechanism is related to the Rap1 signaling pathway.
Collapse
Affiliation(s)
- Guifang Sun
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fangyun Zhao
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yusen Feng
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fei Liu
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingrui Liu
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue Jiang
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yating Gao
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Hu
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Feifei Zhou
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongju Yang
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiqin Du
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Caiyan Zhu
- Department of Radiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Liu
- Department of Pharmacy, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Zhang T, Zhang Q, Yu WC. Mammalian Ste20-like kinase 1 inhibition as a cellular mediator of anoikis in mouse bone marrow mesenchymal stem cells. World J Stem Cells 2023; 15:90-104. [PMID: 37007455 PMCID: PMC10052341 DOI: 10.4252/wjsc.v15.i3.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The low survival rate of mesenchymal stem cells (MSCs) caused by anoikis, a form of apoptosis, limits the therapeutic efficacy of MSCs. As a proapoptotic molecule, mammalian Ste20-like kinase 1 (Mst1) can increase the production of reactive oxygen species (ROS), thereby promoting anoikis. Recently, we found that Mst1 inhibition could protect mouse bone marrow MSCs (mBMSCs) from H2O2-induced cell apoptosis by inducing autophagy and reducing ROS production. However, the influence of Mst1 inhibition on anoikis in mBMSCs remains unclear.
AIM To investigate the mechanisms by which Mst1 inhibition acts on anoikis in isolated mBMSCs.
METHODS Poly-2-hydroxyethyl methacrylate-induced anoikis was used following the silencing of Mst1 expression by short hairpin RNA (shRNA) adenovirus transfection. Integrin (ITGs) were tested by flow cytometry. Autophagy and ITGα5β1 were inhibited using 3-methyladenine and small interfering RNA, respectively. The alterations in anoikis were measured by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling and anoikis assays. The levels of the anoikis-related proteins ITGα5, ITGβ1, and phospho-focal adhesion kinase and the activation of caspase 3 and the autophagy-related proteins microtubules associated protein 1 light chain 3 II/I, Beclin1 and p62 were detected by Western blotting.
RESULTS In isolated mBMSCs, Mst1 expression was upregulated, and Mst1 inhibition significantly reduced cell apoptosis, induced autophagy and decreased ROS levels. Mechanistically, we found that Mst1 inhibition could upregulate ITGα5 and ITGβ1 expression but not ITGα4, ITGαv, or ITGβ3 expression. Moreover, autophagy induced by upregulated ITGα5β1 expression following Mst1 inhibition played an essential role in the protective efficacy of Mst1 inhibition in averting anoikis.
CONCLUSION Mst1 inhibition ameliorated autophagy formation, increased ITGα5β1 expression, and decreased the excessive production of ROS, thereby reducing cell apoptosis in isolated mBMSCs. Based on these results, Mst1 inhibition may provide a promising strategy to overcome anoikis of implanted MSCs.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China
| | - Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China
| | - Wan-Cheng Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China
| |
Collapse
|
4
|
Zhang Q, Cheng X, Zhang H, Zhang T, Wang Z, Zhang W, Yu W. Dissecting molecular mechanisms underlying H 2O 2-induced apoptosis of mouse bone marrow mesenchymal stem cell: role of Mst1 inhibition. Stem Cell Res Ther 2020; 11:526. [PMID: 33298178 PMCID: PMC7724846 DOI: 10.1186/s13287-020-02041-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell (BM-MSC) has been shown to treat pulmonary arterial hypertension (PAH). However, excessive reactive oxygen species (ROS) increases the apoptosis of BM-MSCs, leading to poor survival and engraft efficiency. Thus, improving the ability of BM-MSCs to scavenge ROS may considerably enhance the effectiveness of transplantation therapy. Mammalian Ste20-like kinase 1 (Mst1) is a pro-apoptotic molecule which increases ROS production. The aim of this study is to uncover the underlying mechanisms the effect of Mst1 inhibition on the tolerance of BM-MSCs under H2O2 condition. METHODS Mst1 expression in BM-MSCs was inhibited via transfection with adenoviruses expressing a short hairpin (sh) RNA directed against Mst1 (Ad-sh-Mst1) and exposure to H2O2. Cell viability was detected by Cell Counting Kit 8 (CCK-8) assay, and cell apoptosis was analyzed by Annexin V-FITC/PI, Caspase 3 Activity Assay kits, and pro caspase 3 expression. ROS level was evaluated by the ROS probe DCFH-DA, mitochondrial membrane potential (ΔΨm) assay, SOD1/2, CAT, and GPx expression. Autophagy was assessed using transmission electron microscopy, stubRFP-sensGFP-LC3 lentivirus, and autophagy-related protein expression. The autophagy/Keap1/Nrf2 signal in H2O2-treated BM-MSC/sh-Mst1 was also measured. RESULTS Mst1 inhibition reduced ROS production; increased antioxidant enzyme SOD1/2, CAT, and GPx expression; maintained ΔΨm; and alleviated cell apoptosis in H2O2-treated BM-MSCs. In addition, this phenomenon was closely correlated with the autophagy/Keap1/Nrf2 signal pathway. Moreover, the antioxidant pathway Keap1/Nrf2 was also blocked when autophagy was inhibited by the autophagy inhibitor 3-MA. However, Keap1 or Nrf2 knockout via siRNA had no effect on autophagy activation or suppression. CONCLUSION Mst1 inhibition mediated the cytoprotective action of mBM-MSCs against H2O2-induced oxidative stress injury. The underlying mechanisms involve autophagy activation and the Keap1/Nrf2 signal pathway.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Xianfeng Cheng
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.,Department of Cardiovascular Surgery, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Wancheng Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.
| |
Collapse
|
5
|
Tian J, Popal MS, Huang R, Zhang M, Zhao X, Zhang M, Song X. Caveolin as a Novel Potential Therapeutic Target in Cardiac and Vascular Diseases: A Mini Review. Aging Dis 2020; 11:378-389. [PMID: 32257548 PMCID: PMC7069461 DOI: 10.14336/ad.2019.09603] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022] Open
Abstract
Caveolin, a structural protein of caveolae, play roles in the regulation of endothelial function, cellular lipid homeostasis, and cardiac function by affecting the activity and biogenesis of nitric oxide, and by modulating signal transduction pathways that mediate inflammatory responses and oxidative stress. In this review, we present the role of caveolin in cardiac and vascular diseases and the relevant signaling pathways involved. Furthermore, we discuss a novel therapeutic perspective comprising crosstalk between caveolin and autophagy.
Collapse
Affiliation(s)
- Jinfan Tian
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mohammad Sharif Popal
- 2 Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - RongChong Huang
- 3 Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100010, China
| | - Min Zhang
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xin Zhao
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mingduo Zhang
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiantao Song
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
6
|
Danopoulos S, Bhattacharya S, Mariani TJ, Alam DA. Transcriptional characterisation of human lung cells identifies novel mesenchymal lineage markers. Eur Respir J 2020; 55:1900746. [PMID: 31619469 PMCID: PMC8055172 DOI: 10.1183/13993003.00746-2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE The lung mesenchyme gives rise to multiple distinct lineages of cells in the mature respiratory system, including smooth muscle cells of the airway and vasculature. However, a thorough understanding of the specification and mesenchymal cell diversity in the human lung is lacking. METHODS We completed single-cell RNA sequencing analysis of fetal human lung tissues. Canonical correlation analysis, clustering, cluster marker gene identification and t-distributed stochastic neighbour embedding representation was performed in Seurat. Cell populations were annotated using ToppFun. Immunohistochemistry and in situ hybridisation were used to validate spatiotemporal gene expression patterns for key marker genes. RESULTS We identified molecularly distinct populations representing "committed" fetal human lung endothelial cells, pericytes and smooth muscle cells. Early endothelial lineages expressed "classic" endothelial cell markers (platelet endothelial cell adhesion molecule/CD31 and claudin 5), while pericytes expressed platelet-derived growth factor receptor-β, Thy-1 membrane glycoprotein and basement membrane molecules (collagen IV, laminin and proteoglycans). We observed a large population of "nonspecific" human lung mesenchymal progenitor cells characterised by expression of collagen I and multiple elastin fibre genes (ELN, MFAP2 and FBN1). We closely characterised the diversity of mesenchymal lineages defined by α2-smooth muscle actin (ACTA2) expression. Two cell populations, with the highest levels of ACTA2 transcriptional activity, expressed unique sets of markers associated with airway or vascular smooth muscle cells. Spatiotemporal analysis of these marker genes confirmed early and persistent spatial specification of airway (HHIP, MYLK and IGF1) and vascular (NTRK3 and MEF2C) smooth muscle cells in the developing human lung. CONCLUSION Our data suggest that specification of distinct airway and vascular smooth muscle cell phenotypes is established early in development and can be identified using the markers we provide.
Collapse
Affiliation(s)
- Soula Danopoulos
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Soumyaroop Bhattacharya
- Pediatric Molecular and Personalized Medicine Program, University of Rochester, Rochester, NY
| | - Thomas J Mariani
- Pediatric Molecular and Personalized Medicine Program, University of Rochester, Rochester, NY
| | - Denise Al Alam
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
rBMSC/Cav-1 F92A Mediates Oxidative Stress in PAH Rat by Regulating SelW/14-3-3 η and CA1/Kininogen Signal Transduction. Stem Cells Int 2019; 2019:6768571. [PMID: 31781243 PMCID: PMC6855026 DOI: 10.1155/2019/6768571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 08/21/2019] [Indexed: 01/22/2023] Open
Abstract
Background/Objectives Carbonic anhydrase 1 (CA1)/kininogen and selenoprotein W (SelW)/14-3-3η signal transduction orchestrate oxidative stress, which can also be regulated by nitric oxide (NO). The mutated caveolin-1 (Cav-1F92A) gene may enhance NO production. This study explored the effect of Cav-1F92A-modified rat bone marrow mesenchymal stem cells (rBMSC/Cav-1F92A) on oxidative stress regulation through CA1/kininogen and SelW/14-3-3η signal transduction in a rat model of monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH). Method PAH was induced in rats through the subcutaneous injection of MCT. Next, rBMSC/Vector (negative control), rBMSC/Cav-1, rBMSC/Cav-1F92A, or rBMSC/Cav-1F92A+L-NAME were administered to the rats. Changes in pulmonary hemodynamic and vascular morphometry and oxidative stress levels were evaluated. CA1/kininogen and SelW/14-3-3η signal transduction, endothelial nitric oxide synthase (eNOS) dimerization, and eNOS/NO/sGC/cGMP pathway changes were determined through real-time polymerase chain reaction, Western blot, or immunohistochemical analyses. Results In MCT-induced PAH rats, rBMSC/Cav-1F92A treatment reduced right ventricular systolic pressure, vascular stenosis, and oxidative stress; downregulated CA1/kininogen signal transduction; upregulated SelW/14-3-3η signal transduction; and reactivated the NO pathway. Conclusions In a rat model of MCT-induced PAH, rBMSC/Cav-1F92A reduced oxidative stress by regulating CA1/kininogen and SelW/14-3-3η signal transduction.
Collapse
|