1
|
Li D, Fan C, Li X, Zhao L. The role of macrophage polarization in vascular calcification. Biochem Biophys Res Commun 2024; 710:149863. [PMID: 38579535 DOI: 10.1016/j.bbrc.2024.149863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Vascular calcification is an important factor in the high morbidity and mortality of Cardiovascular and cerebrovascular diseases. Vascular damage caused by calcification of the intima or media impairs the physiological function of the vascular wall. Inflammation is a central factor in the development of vascular calcification. Macrophages are the main inflammatory cells. Dynamic changes of macrophages with different phenotypes play an important role in the occurrence, progression and stability of calcification. This review focuses on macrophage polarization and the relationship between macrophages of different phenotypes and calcification environment, as well as the mechanism of interaction, it is considered that macrophages can promote vascular calcification by releasing inflammatory mediators and promoting the osteogenic transdifferentiation of smooth muscle cells and so on. In addition, several therapeutic strategies aimed at macrophage polarization for vascular calcification are described, which are of great significance for targeted treatment of vascular calcification.
Collapse
Affiliation(s)
- Dan Li
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Chu Fan
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China
| | - Xuepeng Li
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China
| | - Lin Zhao
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China; Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China.
| |
Collapse
|
2
|
Li S, Wu W, Yang B, Liu Z, Duan X, Sun X, Liu H, Zhang S, Zhou Y, Wu W. Histone deacetylase 6 suppression of renal tubular epithelial cell promotes interstitial mineral deposition via alpha-tubulin acetylation. Cell Signal 2024; 116:111057. [PMID: 38242268 DOI: 10.1016/j.cellsig.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Randall's plaque (RP) is derived from interstitial mineral deposition and is highly prevalent in renal calcium oxalate (CaOx) stone disease, which is predictive of recurrence. This study shows that histone deacetylase 6 (HDAC6) levels are suppressed in renal tubular epithelial cells in RP samples, in kidney tissues of hyperoxaluria rats, and in hyper-oxalate-treated or mineralized cultured renal tubular epithelial (MDCK) cells in vitro. Mineral deposition in MDCK cells was exacerbated by HDAC6 inhibition but alleviated by HDAC6 overexpression. Surprisingly, the expression of some osteogenic-associated proteins, were not increased along with the increasing of mineral deposition, and result of single-cell RNA sequencing of renal papillae samples revealed that epithelial cells possess lower calcific activity, suggesting that osteogenic-transdifferentiation may not have actually occurred in tubular epithelial cells despite mineral deposition. The initial mineral depositions facilitated by HDAC6 inhibitor were localized in extracellular dome rather than inside the cells, moreover, suppression of HDAC6 significantly increased the calcium content of co-cultured renal interstitial fibroblasts (NRK49F) and enhanced mineral deposition of indirectly co-cultured NRK49F cells, suggesting that HDAC6 may influence trans-MDCK monolayer secretion of mineral. Further experiments revealed that this regulatory role was partially alpha-tubulinLys40 acetylation dependent. Collectively, these results suggest that hyper-oxalate exposure led to HDAC6 suppression in renal tubular epithelial cells, which may contribute to interstitial mineral deposition by promoting alpha-tubulinLys40 acetylation. Therapeutic agents that influence HDAC6 activity may be beneficial in preventing RP and CaOx stone formation.
Collapse
Affiliation(s)
- Shujue Li
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China; Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Baotong Yang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Zezhen Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China
| | - Xinyuan Sun
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China
| | - Hongxing Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China
| | - Shike Zhang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Yuhao Zhou
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Wenqi Wu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally invasive surgery Robot and Intelligent Equipment, Guangzhou Institute Of Urology, Guangzhou, Guangdong 510230, China; Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China.
| |
Collapse
|
3
|
Yan J, Shen M, Sui B, Lu W, Han X, Wan Q, Liu Y, Kang J, Qin W, Zhang Z, Chen D, Cao Y, Ying S, Tay FR, Niu LN, Jiao K. Autophagic LC3 + calcified extracellular vesicles initiate cartilage calcification in osteoarthritis. SCIENCE ADVANCES 2022; 8:eabn1556. [PMID: 35544558 PMCID: PMC9094669 DOI: 10.1126/sciadv.abn1556] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pathological cartilage calcification plays an important role in osteoarthritis progression but in which the origin of calcified extracellular vesicles (EVs) and their effects remain unknown. Here, we demonstrate that pathological cartilage calcification occurs in the early stage of the osteoarthritis in which the calcified EVs are closely involved. Autophagosomes carrying the minerals are released in EVs, and calcification is induced by those autophagy-regulated calcified EVs. Autophagy-derived microtubule-associated proteins 1A/1B light chain 3B (LC3)-positive EVs are the major population of calcified EVs that initiate pathological calcification. Release of LC3-positive calcified EVs is caused by blockage of the autophagy flux resulted from histone deacetylase 6 (HDAC6)-mediated microtubule destabilization. Inhibition of HDAC6 activity blocks the release of the LC3-positive calcified EVs by chondrocytes and effectively reverses the pathological calcification and degradation of cartilage. The present work discovers that calcified EVs derived from autophagosomes initiate pathological cartilage calcification in osteoarthritis, with potential therapeutic targeting implication.
Collapse
Affiliation(s)
- Jianfei Yan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Minjuan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bingdong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Weicheng Lu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoxiao Han
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qianqian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Junjun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenpin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zibing Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Da Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Cao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Siqi Ying
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- The Graduate School, Augusta University, Augusta, GA, USA
- Corresponding author. (K.J.); (L.-n.N.); (F.R.T.)
| | - Li-na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Corresponding author. (K.J.); (L.-n.N.); (F.R.T.)
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Corresponding author. (K.J.); (L.-n.N.); (F.R.T.)
| |
Collapse
|
4
|
Buffolo F, Monticone S, Camussi G, Aikawa E. Role of Extracellular Vesicles in the Pathogenesis of Vascular Damage. Hypertension 2022; 79:863-873. [PMID: 35144490 PMCID: PMC9010370 DOI: 10.1161/hypertensionaha.121.17957] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) are nanosized membrane-bound structures released by cells that are able to transfer nucleic acids, protein cargos, and metabolites to specific recipient cells, allowing cell-to-cell communications in an endocrine and paracrine manner. Endothelial, leukocyte, and platelet-derived EVs have emerged both as biomarkers and key effectors in the development and progression of different stages of vascular damage, from earliest alteration of endothelial function, to advanced atherosclerotic lesions and cardiovascular calcification. Under pathological conditions, circulating EVs promote endothelial dysfunction by impairing vasorelaxation and instigate vascular inflammation by increasing levels of adhesion molecules, reactive oxygen species, and proinflammatory cytokines. Platelets, endothelial cells, macrophages, and foam cells secrete EVs that regulate macrophage polarization and contribute to atherosclerotic plaque progression. Finally, under pathological stimuli, smooth muscle cells and macrophages secrete EVs that aggregate between collagen fibers and serve as nucleation sites for ectopic mineralization in the vessel wall, leading to formation of micro- and macrocalcification. In this review, we summarize the emerging evidence of the pathological role of EVs in vascular damage, highlighting the major findings from the most recent studies and discussing future perspectives in this research field.
Collapse
Affiliation(s)
- Fabrizio Buffolo
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy. (F.B., S.M.).,Center for Interdisciplinary Cardiovascular Sciences, Department of Cardiovascular Medicine (F.B, E.A.)
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy. (F.B., S.M.)
| | - Giovanni Camussi
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Italy. (G.C.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Department of Cardiovascular Medicine (F.B, E.A.).,Center for Excellence in Vascular Biology, Department of Cardiovascular Medicine (E.A.)
| |
Collapse
|
5
|
Sun XJ, Liu NF. Diabetic mellitus, vascular calcification and hypoxia: A complex and neglected tripartite relationship. Cell Signal 2021; 91:110219. [PMID: 34921978 DOI: 10.1016/j.cellsig.2021.110219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/11/2021] [Accepted: 12/11/2021] [Indexed: 11/15/2022]
Abstract
DM (diabetic mellitus) and its common vascular complications VC (vascular calcification), are increasingly harmful to human health. In recent years, the research on the relationship between DM and VC is also deepening. Hypoxia, as one of the pathogenic factors of many disease models, is also closely related to the occurrence of DM and VC. There are some studies on the role of hypoxia in the pathogenesis of DM and VC respectively, but no one has made an in-depth summary of the systematic connection between hypoxia, DM and VC. Therefore, what we want to review in this article are the relationship between DM, VC and hypoxia, respectively, as well as the role of hypoxia in the development of DM and VC, which has little concern but is a novel and potentially target that may provide some new ideas for the prevention and treatment of DM, VC, especially diabetic VC.
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, PR China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, PR China.
| |
Collapse
|
6
|
Xu SN, Zhou X, Zhu CJ, Qin W, Zhu J, Zhang KL, Li HJ, Xing L, Lian K, Li CX, Sun Z, Wang ZQ, Zhang AJ, Cao HL. Nϵ-Carboxymethyl-Lysine Deteriorates Vascular Calcification in Diabetic Atherosclerosis Induced by Vascular Smooth Muscle Cell-Derived Foam Cells. Front Pharmacol 2020; 11:626. [PMID: 32499695 PMCID: PMC7243476 DOI: 10.3389/fphar.2020.00626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Nϵ-carboxymethyl-lysine (CML), an advanced glycation end product, is involved in vascular calcification (VC) in diabetic atherosclerosis. This study aimed to investigate the effects of CML on VC in diabetic atherosclerosis induced by vascular smooth muscle cell (VSMC)–derived foam cells. Human studies, animal studies and cell studies were performed. The human study results from 100 patients revealed a poor blood glucose and lipid status and more severe coronary lesions and stenosis in patients with coronary artery disease and diabetes mellitus. Intraperitoneal injection of streptozotocin combined with a high-fat diet was used to build a diabetic atherosclerosis model in ApoE−/− mice. The animal study results indicated that CML accelerated VC progression in diabetic atherosclerosis by accelerating the accumulation of VSMC-derived foam cells in ApoE−/− mice. The cell study results illustrated that CML induced VSMC-derived foam cells apoptosis and aggravated foam cells calcification. Consistent with this finding, calcium content and the expression levels of alkaline phosphatase, bone morphogenetic protein 2 and runt-related transcription factor 2 were significantly elevated in A7r5 cells treated with oxidation-low-density lipoprotein and CML. Thus, we concluded that CML promoted VSMC-derived foam cells calcification to aggravate VC in diabetic atherosclerosis, providing evidence for the contribution of foam cells to diabetic VC.
Collapse
Affiliation(s)
- Sui-Ning Xu
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xin Zhou
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Cun-Jun Zhu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Jie Zhu
- Department of Cardiology, Affiliated Luan Hospital of Anhui Medical University, Luan, China
| | - Ke-Lin Zhang
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Jin Li
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu Xing
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng-Xiang Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhong-Qun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - An-Ji Zhang
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Ling Cao
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|