1
|
Yang K, Yang T, Yang T, Yuan Y, Li F. Unraveling tumor microenvironment heterogeneity in malignant pleural mesothelioma identifies biologically distinct immune subtypes enabling prognosis determination. Front Oncol 2022; 12:995651. [PMID: 36237331 PMCID: PMC9552848 DOI: 10.3389/fonc.2022.995651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a rare and intractable disease exhibiting a remarkable intratumoral heterogeneity and dismal prognosis. Although immunotherapy has reshaped the therapeutic strategies for MPM, patients react with discrepant responsiveness. Methods Herein, we recruited 333 MPM patients from 5 various cohorts and developed an in-silico classification system using unsupervised Non-negative Matrix Factorization and Nearest Template Prediction algorithms. The genomic alterations, immune signatures, and patient outcomes were systemically analyzed across the external TCGA-MESO samples. Machine learning-based integrated methodology was applied to identify a gene classifier for clinical application. Results The gene expression profiling-based classification algorithm identified immune-related subtypes for MPMs. In comparison with the non-immune subtype, we validated the existence of abundant immunocytes in the immune subtype. Immune-suppressed MPMs were enriched with stroma fraction, myeloid components, and immunosuppressive tumor-associated macrophages (TAMs) as well exhibited increased TGF-β signature that informs worse clinical outcomes and reduced efficacy of anti-PD-1 treatment. The immune-activated MPMs harbored the highest lymphocyte infiltration, growing TCR and BCR diversity, and presented the pan-cancer immune phenotype of IFN-γ dominant, which confers these tumors with better drug response when undergoing immune checkpoint inhibitor (ICI) treatment. Genetically, BAP1 mutation was most commonly found in patients of immune-activated MPMs and was associated with a favorable outcome in a subtype-specific pattern. Finally, a robust 12-gene classifier was generated to classify MPMs with high accuracy, holding promise value in predicting patient survival. Conclusions We demonstrate that the novel classification system can be exploited to guide the identification of diverse immune subtypes, providing critical biological insights into the mechanisms driving tumor heterogeneity and responsible for cancer-related patient prognoses.
Collapse
Affiliation(s)
- Kaidi Yang
- Department of Oncology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
- *Correspondence: Kaidi Yang, ; Fang Li,
| | - Tongxin Yang
- Department of Oncology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
| | - Tao Yang
- Department of Oncology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Li
- Department of Oncology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
- *Correspondence: Kaidi Yang, ; Fang Li,
| |
Collapse
|
2
|
Torricelli F, Lococo F, Di Stefano TS, Lorenzini E, Piana S, Valli R, Rena O, Veronesi G, Billè A, Ciarrocchi A. Deep Sequencing Analysis Identified a Specific Subset of Mutations Distinctive of Biphasic Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:2454. [PMID: 32872534 PMCID: PMC7563974 DOI: 10.3390/cancers12092454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a heterogeneous disease. Morphologically, three different phenotypes are distinguishable: epithelioid (e-), sarcomatoid (s-) and biphasic (biph-) MPM, the latest, being a mixture of e- and s-MPM cells. Being an intermediate entity, management of biph-MPM, remains debatable and controversial, with different guidelines recommending distinct approaches. Identification of biph-MPM associated genetic alterations, through deep sequencing analysis, may provide useful tools to understand these lesions. A retrospective cohort of 69 surgically resected MPMs, 39 biph-MPMs (56.5%) and 30 e-MPMs (43.5%) was selected. A separate set of 16 biph-MPM was used as validation set. Deep sequencing analysis on an MPM-specific custom panel (MPM_geneset) comprising 1041 amplicons spanning 34 genes was performed. A total of 588 variants and 5309 mutational events were detected. In total, 91.3% of MPMs showed at least one mutation and 76.8% showed co-occurrence of more than one alteration. Mutations in MXRA5 (p = 0.05) and NOD2 (p = 0.018) were significantly associated with biph-MPM both in the training and validation cohort and correlated with the extent of the sarcomatoid component. Mutations in NOD2 and XRCC6 correlated with patients' survival. We demonstrated that biph-MPM are associated with a specific mutation set, and that genetic analysis at diagnosis may improve patients' risk stratification.
Collapse
Affiliation(s)
- Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.T.); (E.L.)
| | - Filippo Lococo
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Teresa Severina Di Stefano
- Unit of Thoracic Surgery, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Eugenia Lorenzini
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.T.); (E.L.)
| | - Simonetta Piana
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.P.); (R.V.)
| | - Riccardo Valli
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.P.); (R.V.)
| | - Ottavio Rena
- Thoracic Surgery Unit, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Giulia Veronesi
- Unit of Thoracic Surgery, Humanitas Cancer Center, 20132 Milan, Italy;
| | - Andrea Billè
- Division of Cancer Studies, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
- Department of Thoracic Surgery, Guy’s Hospital, London SE1 9RT, UK
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.T.); (E.L.)
| |
Collapse
|
3
|
Saji T, Nishita M, Ogawa H, Doi T, Sakai Y, Maniwa Y, Minami Y. Critical role of the Ror-family of receptor tyrosine kinases in invasion and proliferation of malignant pleural mesothelioma cells. Genes Cells 2018; 23:606-613. [PMID: 29845703 DOI: 10.1111/gtc.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/28/2018] [Indexed: 01/16/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis and closely related to exposure to asbestos. MPM is a heterogeneous tumor with three main histological subtypes, epithelioid, sarcomatoid, and biphasic types, among which sarcomatoid type shows the poorest prognosis. The Ror-family of receptor tyrosine kinases, Ror1 and Ror2, is expressed in various types of tumor cells at higher levels and affects their aggressiveness. However, it is currently unknown whether they are expressed in and involved in aggressiveness of MPM. Here, we show that Ror1 and Ror2 are expressed in clinical specimens and cell lines of MPM with different histological features. Studies using MPM cell lines indicate that expression of Ror2 is associated tightly with high invasiveness of MPM cells, whereas Ror1 can contribute to their invasion in the absence of Ror2. However, both Ror1 and Ror2 promote proliferation of MPM cells. We also show that promoted invasion and proliferation of MPM cells by Ror signaling can be mediated by the Rho-family of small GTPases, Rac1, and Cdc42. These findings elucidate the critical role of Ror signaling in promoting invasion and proliferation of MPM cells.
Collapse
Affiliation(s)
- Takeshi Saji
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Hiroyuki Ogawa
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Takefumi Doi
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Yasuhiro Sakai
- Department of Pathology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
4
|
Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, Gnad F, Nguyen TT, Jaiswal BS, Chirieac LR, Sciaranghella D, Dao N, Gustafson CE, Munir KJ, Hackney JA, Chaudhuri A, Gupta R, Guillory J, Toy K, Ha C, Chen YJ, Stinson J, Chaudhuri S, Zhang N, Wu TD, Sugarbaker DJ, de Sauvage FJ, Richards WG, Seshagiri S. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet 2016; 48:407-16. [PMID: 26928227 DOI: 10.1038/ng.3520] [Citation(s) in RCA: 664] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Abstract
We analyzed transcriptomes (n = 211), whole exomes (n = 99) and targeted exomes (n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51 to be significantly mutated (q-score ≥ 0.8) in MPMs. We identified recurrent mutations in several genes, including SF3B1 (∼2%; 4/216) and TRAF7 (∼2%; 5/216). SF3B1-mutant samples showed a splicing profile distinct from that of wild-type tumors. TRAF7 alterations occurred primarily in the WD40 domain and were, except in one case, mutually exclusive with NF2 alterations. We found recurrent gene fusions and splice alterations to be frequent mechanisms for inactivation of NF2, BAP1 and SETD2. Through integrated analyses, we identified alterations in Hippo, mTOR, histone methylation, RNA helicase and p53 signaling pathways in MPMs.
Collapse
Affiliation(s)
- Raphael Bueno
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric W Stawiski
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA.,Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Leonard D Goldstein
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA.,Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Steffen Durinck
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA.,Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Assunta De Rienzo
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zora Modrusan
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Florian Gnad
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Thong T Nguyen
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Bijay S Jaiswal
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniele Sciaranghella
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nhien Dao
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Corinne E Gustafson
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kiara J Munir
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jason A Hackney
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Amitabha Chaudhuri
- Bioinformatics Department, MedGenome Labs, Pvt., Ltd., Narayana Health City, Bangalore, India
| | - Ravi Gupta
- Bioinformatics Department, MedGenome Labs, Pvt., Ltd., Narayana Health City, Bangalore, India
| | - Joseph Guillory
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Karen Toy
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Connie Ha
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Ying-Jiun Chen
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Jeremy Stinson
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Subhra Chaudhuri
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Na Zhang
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Thomas D Wu
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - David J Sugarbaker
- Division of Thoracic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Frederic J de Sauvage
- Molecular Oncology Department, Genentech, Inc., South San Francisco, California, USA
| | - William G Richards
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Somasekar Seshagiri
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
5
|
Deng XB, Xiao L, Wu Y, Jin F, Mossman B, Testa JR, Xiao GH. Inhibition of mesothelioma cancer stem-like cells with adenovirus-mediated NK4 gene therapy. Int J Cancer 2014; 137:481-90. [PMID: 25501304 DOI: 10.1002/ijc.29391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/24/2014] [Indexed: 02/05/2023]
Abstract
Malignant mesothelioma (MM) is a highly invasive and chemoresistant malignancy induced by asbestos fibers. NK4, a hepatocyte growth factor antagonist and angiogenesis inhibitor, consists of the N-terminal hairpin domain and four kringle domains of the α-chain of hepatocyte growth factor. The therapeutic potential of NK4 has been demonstrated in a variety of tumor types. However, the mechanisms by which NK4 inhibits tumor growth have not been well delineated. In this study, it is shown that the NK4 adenovirus (Ad-NK4) potently inhibits cell viability, invasiveness and tumorigenicity of human MM cells. Significantly, this study demonstrates for the first time that Ad-NK4 inhibits cancer stem-like cell (CSC) properties as assessed by spheroid formation assay, side population analysis and flow cytometric sorting of CD24 cells. In addition to inhibiting phosphorylation of Met and AKT, Ad-NK4 markedly suppressed the active form of β-catenin, a key mediator of both Wnt and AKT pathways. It is further demonstrated that expression of NK4 suppresses β-catenin nuclear localization and transcriptional activity. Intriguingly, the expression levels of Oct4 and Myc, two critical stem cell factors and downstream targets of β-catenin, were also diminished by Ad-NK4. Furthermore, the strong antitumor effect of NK4 was found to be linked to its ability to inhibit CSCs as revealed by immunohistochemical examination of tumor specimens from a mouse xenograft model of human MM. These findings suggest that NK4 acts as a CSC inhibitor by impeding Met/AKT/β-catenin signaling and holds promise for achieving durable therapeutic responses in MM by constraining the CSC component of these aggressive tumors.
Collapse
Affiliation(s)
- Xu-Bin Deng
- Cancer Institute, Southern Medical University, Guangzhou, China
| | - Li Xiao
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Yue Wu
- Cancer Institute, Southern Medical University, Guangzhou, China
| | - Fang Jin
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Brooke Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Guang-Hui Xiao
- Cancer Institute, Southern Medical University, Guangzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
6
|
Mahabir R, Tanino M, Elmansuri A, Wang L, Kimura T, Itoh T, Ohba Y, Nishihara H, Shirato H, Tsuda M, Tanaka S. Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro Oncol 2013; 16:671-85. [PMID: 24357458 DOI: 10.1093/neuonc/not239] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ionizing irradiation is an effective treatment for malignant glioma (MG); however, a higher rate of recurrence with more aggressive phenotypes is a vital issue. Although epithelial-mesenchymal transition (EMT) is involved in irradiation-induced cancer progression, the role for such phenotypic transition in MG remains unknown. METHODS To investigate the mechanism of irradiation-dependent tumor progression in MG, we performed immunohistochemistry (IHC) and qRT-PCR using primary and recurrent MG specimens, MG cell lines, and primary culture cells of MG. siRNA technique was used for MG cell lines. RESULTS In 22 cases of clinically recurrent MG, the expression of the mesenchymal markers vimentin and CD44 was found to be increased by IHC. In paired identical MG of 7 patients, the expression of collagen, MMPs, and YKL-40 were also elevated in the recurrent MGs, suggesting the The Cancer Genome Atlas-based mesenchymal subtype. Among EMT regulators, sustained elevation of Snail was observed in MG cells at 21 days after irradiation. Cells exhibited an upregulation of migration, invasion, numbers of focal adhesion, and MMP-2 production, and all of these mesenchymal features were abrogated by Snail knockdown. Intriguingly, phosphorylation of ERK1/2 and GSK-3β were increased after irradiation in a Snail-dependent manner, and TGF-β was elevated in both fibroblasts and macrophages but not in MG cells after irradiation. It was noteworthy that irradiated cells also expressed stemness features such as SOX2 expression and tumor-forming potential in vivo. CONCLUSIONS We here propose a novel concept of glial-mesenchymal transition after irradiation in which the sustained Snail expression plays an essential role.
Collapse
Affiliation(s)
- Roshan Mahabir
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan (R.M., M.T., A.E., T.K., M.T., S.T.); Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan (L.W., H.N., S.T.); Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan (Y.O.); Department of Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.S.); Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan (T.I)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Malignant pleural mesothelioma (MPM) is a resistant form of lung cancer that is often related to prior asbestos exposure. While surgical resection and radiotherapy techniques have been refined in recent years, neither has been proven to significantly extend patient survival compared with untreated controls. Until the release of pemetrexed in 2004, even combination chemotherapy regimens often resulted in a response rate of <20%. A recent phase III trial documented a 41.3% response rate for cisplatin plus pemetrexed. In the future, new multimodality regimens featuring novel targeted therapies directed against molecular targets, such as the vascular endothelial growth factor, hold the greatest promise for improved outcomes in MPM. The standard radiographic assessment of response to MPM therapy remains a poor surrogate for clinically relevant endpoints such as median survival. Furthermore, it is not currently known whether aggressive multimodality treatment for MPM will improve survival or quality of life above and beyond symptomatic care. Ongoing clinical trials are comparing chemotherapy and surgery with supportive care in an effort to define the role of different therapies in MPM. MPM treatment is a costly public health issue; after efficacy is proven, additional studies are needed to measure the cost effectiveness of MPM treatment regimens.
Collapse
Affiliation(s)
- Ranjit K Goudar
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27701, USA.
| |
Collapse
|