1
|
Choo S, Wolf CB, Mack HM, Egan MJ, Kiem HP, Radtke S. Choosing the right mouse model: comparison of humanized NSG and NBSGW mice for in vivo HSC gene therapy. Blood Adv 2024; 8:916-926. [PMID: 38113461 PMCID: PMC10877116 DOI: 10.1182/bloodadvances.2023011371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
ABSTRACT In vivo hematopoietic stem cell (HSC) gene therapy is an emerging and promising area of focus in the gene therapy field. Humanized mouse models are frequently used to evaluate novel HSC gene therapy approaches. Here, we comprehensively evaluated 2 mouse strains, NSG and NBSGW. We studied human HSC engraftment in the bone marrow (BM), mobilization of BM-engrafted HSCs into circulation, in vivo transduction using vesicular stomatitis virus glycoprotein-pseudotyped lentiviral vectors (VSV-G LVs), and the expression levels of surface receptors needed for transduction of viral vectors. Our findings reveal that the NBSGW strain exhibits superior engraftment of human long-term HSCs compared with the NSG strain. However, neither model resulted in a significant increase in circulating human HSCs after mobilization. We show that time after humanization as well as human chimerism levels and platelet counts in the peripheral blood can be used as surrogates for human HSC engraftment in the BM. Furthermore, we observed low expression of the low-density lipoprotein receptor, a requirement for VSV-G LV transduction, in the human HSCs present in the murine BM. Our comprehensive characterization of humanized mouse models highlights the necessity of proper validation of the model and methods to study in vivo HSC gene therapy strategies.
Collapse
Affiliation(s)
- Seunga Choo
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Carl B. Wolf
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Heather M. Mack
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mitchell J. Egan
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Hans-Peter Kiem
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Stefan Radtke
- Division of Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
2
|
Benefits of plerixafor for mobilization of peripheral blood stem cells prior to autologous transplantation: a dual-center retrospective cohort study. Cytotherapy 2023:S1465-3249(23)00057-9. [PMID: 36914555 DOI: 10.1016/j.jcyt.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND AIMS Before autologous stem cell transplantation (ASCT), hematopoietic stem cells must be stimulated to move from the bone marrow to the peripheral blood for harvesting. Plerixafor, a C-X-C chemokine receptor type 4 antagonist, is used to increase stem cell harvests. However, the effects of plerixafor on post-ASCT outcomes remain unclear. METHODS In a dual-center retrospective cohort study of 43 Japanese patients who received ASCT, the authors compared transplantation outcomes in patients who underwent stem cell mobilization with granulocyte colony-stimulating factor with (n = 25) or without (n = 18) plerixafor. RESULTS The number of days to neutrophil and platelet engraftment was significantly shorter with plerixafor than without plerixafor, as assessed by univariate (neutrophil, P = 0.004, platelet, P = 0.002), subgroup, propensity score matching and inverse probability weighting analyses. Although the cumulative incidence of fever was comparable with or without plerixafor (P = 0.31), that of sepsis was significantly lower with plerixafor than without (P < 0.01). Thus, the present data indicate that plerixafor leads to earlier neutrophil and platelet engraftment and a reduction of infectious risk. CONCLUSIONS The authors conclude that plerixafor may be safe to use and that it reduces the risk of infection in patients with a low CD34+ cell count the day before apheresis.
Collapse
|
3
|
Mesquita Augusto Passos R, Feldens TK, Marcolino MAZ, Gouvêa AS, Dos Santos Oliveira L, Menardi Nasser L, Rodrigues RF, de Lourdes Martins Perobelli L, Campolina AG, de Almeida Neto C. Economic evaluation of plerixafor addition in the mobilization and leukapheresis of hematopoietic stem cells for autologous transplantation: a systematic review. Expert Rev Pharmacoecon Outcomes Res 2023; 23:15-28. [PMID: 36285481 DOI: 10.1080/14737167.2023.2140140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Although plerixafor in association with granulocyte colony-stimulating factor (G-CSF) can improve mobilization and collection of hematopoietic stem cells (HSC) by leukapheresis, cost may limit its clinical application. The present study systematically reviews economic evaluations of plerixafor plus G-CSF usage compared to G-CSF alone and compares different strategies of plerixafor utilization in multiple myeloma and lymphoma patients eligible for autologous HSC transplantation. AREAS COVERED Relevant economic evaluations, partial or complete, were searched on PubMed, Embase, LILACS, and Cochrane Central Register of Controlled Trials for a period ending 30 June 2021. This systematic review was reported following the PRISMA Statement. Six economic evaluations were included, considering the use of upfront or just-in-time plerixafor compared to G-CSF alone or other plerixafor strategies. Most comparisons showed both increased cost and health benefits with the addition of plerixafor. Most analyses favored just-in-time plerixafor compared to upfront plerixafor, with a probable preference for broader cutoffs for just-in-time plerixafor initiation. EXPERT OPINION Plerixafor is a potentially cost-effective technology in the mobilization of HSC in patients with multiple myeloma and lymphomas eligible for autologous HSC transplantation. There is a decreased number of leukapheresis sessions and remobilizations and a higher yield of CD34+ cells.
Collapse
Affiliation(s)
- Roselene Mesquita Augusto Passos
- Departamento de Transplante de Medula Óssea, Hematologia, Hospital de Transplantes Euryclides de Jesus Zerbini, São Paulo, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Hematologia e Hemoterapia, Dasa-Hospital 9 de Julho, São Paulo, Brazil
| | - Tallys Kalynka Feldens
- Programa de Pós-Graduação em Desenvolvimento Econômico, Universidade Federal do Paraná, Paraná, Brazil.,Departamento Financeiro, Secretaria de Estado da Saúde do Paraná, Paraná, Brazil
| | - Miriam Allein Zago Marcolino
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil.,Instituto para Avaliação de Tecnologia em Saúde - INCT/IATS (CNPQ 465518/2014-1), Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | | | | | - Luisa Menardi Nasser
- Departamento de Hematologia e Hemoterapia, Dasa-Hospital 9 de Julho, São Paulo, Brazil
| | - Roseli Fernandes Rodrigues
- Núcleo de Ensino e Pesquisa / Núcleo de Avaliação de Tecnologias em Saúde, Hospital de Transplantes Euryclides de Jesus Zerbini, São Paulo, Brazil
| | | | | | - Cesar de Almeida Neto
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Hematologia e Hemoterapia, Dasa-Hospital 9 de Julho, São Paulo, Brazil.,Departamento de Aféreses, Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Omer-Javed A, Pedrazzani G, Albano L, Ghaus S, Latroche C, Manzi M, Ferrari S, Fiumara M, Jacob A, Vavassori V, Nonis A, Canarutto D, Naldini L. Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells. Cell 2022; 185:2248-2264.e21. [PMID: 35617958 PMCID: PMC9240327 DOI: 10.1016/j.cell.2022.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) is proving successful to treat several genetic diseases. HSPCs are mobilized, harvested, genetically corrected ex vivo, and infused, after the administration of toxic myeloablative conditioning to deplete the bone marrow (BM) for the modified cells. We show that mobilizers create an opportunity for seamless engraftment of exogenous cells, which effectively outcompete those mobilized, to repopulate the depleted BM. The competitive advantage results from the rescue during ex vivo culture of a detrimental impact of mobilization on HSPCs and can be further enhanced by the transient overexpression of engraftment effectors exploiting optimized mRNA-based delivery. We show the therapeutic efficacy in a mouse model of hyper IgM syndrome and further developed it in human hematochimeric mice, showing its applicability and versatility when coupled with gene transfer and editing strategies. Overall, our findings provide a potentially valuable strategy paving the way to broader and safer use of HSPC-GT. HSPC mobilizers create an opportunity to engraft exogenous cells in depleted niches Ex vivo culture endows HSPCs with migration advantage by rescuing CXCR4 expression Cultured HSPCs outcompete mobilized HSPCs for engraftment in depleted BM niches Transient engraftment enhancers coupled with gene editing confer a competitive advantage
Collapse
Affiliation(s)
- Attya Omer-Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gabriele Pedrazzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Sherash Ghaus
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Claire Latroche
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maura Manzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandro Nonis
- CUSSB-University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy; Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
5
|
Luo C, Wu G, Huang X, Zhang Y, Ma Y, Huang Y, Huang Z, Li H, Hou Y, Chen J, Li X, Xu S. Efficacy of hematopoietic stem cell mobilization regimens in patients with hematological malignancies: a systematic review and network meta-analysis of randomized controlled trials. Stem Cell Res Ther 2022; 13:123. [PMID: 35317856 PMCID: PMC8939102 DOI: 10.1186/s13287-022-02802-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Efficient mobilization of hematopoietic stem cells (HSCs) from bone marrow niche into circulation is the key to successful collection and transplantation in patients with hematological malignancies. The efficacy of various HSCs mobilization regimens has been widely investigated, but the results are inconsistent. METHODS We performed comprehensive databases searching for eligible randomized controlled trials (RCTs) that comparing the efficacy of HSCs mobilization regimens in patients with hematological malignancies. Bayesian network meta-analyses were performed with WinBUGS. Standard dose of granulocyte colony-stimulating factor (G-CSF SD) was chosen as the common comparator. Estimates of relative treatment effects for other regimens were reported as mean differences (MD) or odds ratio (OR) with associated 95% credibility interval (95% CrI). The surface under the cumulative ranking curve (SUCRA) were obtained to present rank probabilities of all included regimens. RESULTS Databases searching and study selection identified 44 eligible RCTs, of which the mobilization results are summarized. Then we compared the efficacy of mobilization regimens separately for patients with multiple myeloma (MM) and non-Hodgkin lymphoma (NHL) by including 13 eligible trials for network meta-analysis, involving 638 patients with MM and 592 patients with NHL. For patients with MM, data are pooled from 8 trials for 6 regimens, including G-CSF in standard dose (SD) or reduced dose (RD) combined with cyclophosphamide (CY), intermediate-dose cytarabine (ID-AraC) or plerixafor. The results show that compared with G-CSF SD alone, 3 regimens including ID-AraC + G-CSF SD (MD 14.29, 95% CrI 9.99-18.53; SUCRA 1.00), G-CSF SD + Plerixafor SD (MD 4.15, 95% CrI 2.92-5.39; SUCRA 0.80), and CY + G-CSF RD (MD 1.18, 95% CrI 0.29-2.07; SUCRA 0.60) are associated with significantly increased total number of collected CD34+ cells (× 106/kg), among which ID-AraC + G-CSF SD ranked first with a probability of being best regimen of 100%. Moreover, ID-AraC + G-CSF SD and G-CSF SD + Plerixafor SD are associated with significantly higher successful rate of achieving optimal target (collecting ≥ 4-6 × 106 CD34+ cells/kg). For patients with NHL, data are pooled from 5 trials for 4 regimens, the results show that compared with G-CSF SD alone, G-CSF SD + Plerixafor SD (MD 3.62, 95% CrI 2.86-4.38; SUCRA 0.81) and G-CSF SD plus the new CXC chemokine receptor-4 (CXCR-4) antagonist YF-H-2015005 (MD 3.43, 95% CrI 2.51-4.35; SUCRA 0.69) are associated with significantly higher number of total CD34+ cells collected. These 2 regimens are also associated with significantly higher successful rate of achieving optimal target. There are no significant differences in rate of achieving optimal target between G-CSF SD + Plerixafor SD and G-CSF + YF-H-2015005. CONCLUSIONS In conclusion, ID-AraC plus G-CSF is associated with the highest probability of being best mobilization regimen in patients with MM. For patients with NHL, G-CSF in combination with plerixafor or YF-H-2015005 showed similar improvements in HSCs mobilization efficacy. The relative effects of other chemotherapy-based mobilization regimens still require to be determined with further investigations.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Hui Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xi Li
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| |
Collapse
|
6
|
Goto H, Kanamori R, Nishina S, Seto T. Plerixafor stem cell mobilization in Japanese children: A post-marketing study. Pediatr Int 2022; 64:e15106. [PMID: 35396889 PMCID: PMC9323438 DOI: 10.1111/ped.15106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Plerixafor is approved in Japan for hematopoietic stem cell mobilization prior to autologous transplant, but limited data are available on the use in children. This study evaluates the safety and effectiveness of plerixafor in Japanese children aged <15 years. METHODS A multicenter, post-marketing surveillance study was conducted in Japan to evaluate the safety and effectiveness of plerixafor in routine clinical practice. This subgroup analysis examined the safety and effectiveness of plerixafor administered as a once-daily, subcutaneous injection in children aged <15 years. The primary effectiveness outcome was the proportion of patients with 2 × 106 cells CD34+ cells/kg collected via apheresis within 4 days. RESULTS Eighteen patients with solid tumors were included in this analysis; (median age 6.0 years, range, 1-13 years). In addition to granulocyte colony-stimulating factor, all patients had received chemotherapy immediately prior to plerixafor administration. The mean (SD) daily dose of plerixafor was 0.24 (0.01) mg/kg. Seven of the 18 patients (38.9%) developed adverse drug reactions (ADRs), all occurring in patients aged ≥6 years and weighing ≥16 kg. The most common ADRs were pyrexia (n = 4), vomiting (n = 3), nausea (n = 2), and abdominal pain (n = 2). Twelve patients (66.7%) achieved a CD34+ cell count ≥2 × 106 cells/kg within 4 days after the start of plerixafor administration. CONCLUSIONS The results provide an encouraging sign that plerixafor 0.24 mg/kg may be safe and effective in pediatric patients in routine clinical practice in Japan, but further research in larger studies is needed.
Collapse
Affiliation(s)
- Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Rie Kanamori
- Sanofi Genzyme Medical, Oncology Medical, Sanofi K.K., Tokyo, Japan
| | - Satoshi Nishina
- Medical Affairs, Post-Authorization Regulatory Studies, Sanofi K.K., Tokyo, Japan
| | - Takashi Seto
- Medical Affairs, Post-Authorization Regulatory Studies, Sanofi K.K., Tokyo, Japan
| |
Collapse
|
7
|
Porfyriou E, Letsa S, Kosmas C. Hematopoietic stem cell mobilization strategies to support high-dose chemotherapy: A focus on relapsed/refractory germ cell tumors. World J Clin Oncol 2021; 12:746-766. [PMID: 34631440 PMCID: PMC8479351 DOI: 10.5306/wjco.v12.i9.746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/19/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
High-dose chemotherapy (HDCT) with autologous hematopoietic stem cell transplantation has been explored and has played an important role in the management of patients with high-risk germ cell tumors (GCTs) who failed to be cured by conventional chemotherapy. Hematopoietic stem cells (HSCs) collected from the peripheral blood, after appropriate pharmacologic mobilization, have largely replaced bone marrow as the principal source of HSCs in transplants. As it is currently common practice to perform tandem or multiple sequential cycles of HDCT, it is anticipated that collection of large numbers of HSCs from the peripheral blood is a prerequisite for the success of the procedure. Moreover, the CD34+ cell dose/kg of body weight infused after HDCT has proven to be a major determinant of hematopoietic engraftment, with patients who receive > 2 × 106 CD34+ cells/kg having consistent, rapid, and sustained hematopoietic recovery. However, many patients with relapsed/refractory GCTs have been exposed to multiple cycles of myelosuppressive chemotherapy, which compromises the efficacy of HSC mobilization with granulocyte colony-stimulating factor with or without chemotherapy. Therefore, alternative strategies that use novel agents in combination with traditional mobilizing regimens are required. Herein, after an overview of the mechanisms of HSCs mobilization, we review the existing literature regarding studies reporting various HSC mobilization approaches in patients with relapsed/refractory GCTs, and finally report newer experimental mobilization strategies employing novel agents that have been applied in other hematologic or solid malignancies.
Collapse
Affiliation(s)
- Eleni Porfyriou
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| | - Sylvia Letsa
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| | - Christos Kosmas
- Department of Medical Oncology and Hematopoietic Cell Transplant Unit, “Metaxa” Cancer Hospital, Piraeus 18537, Greece
| |
Collapse
|
8
|
Khandpur S, Gupta S, Gunaabalaji DR. Stem cell therapy in dermatology. Indian J Dermatol Venereol Leprol 2021; 87:753-767. [PMID: 34245532 DOI: 10.25259/ijdvl_19_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 01/01/2021] [Indexed: 12/20/2022]
Abstract
Stem cells are precursor cells present in many tissues with ability to differentiate into various types of cells. This interesting property of plasticity can have therapeutic implications and there has been substantial research in this field in last few decades. As a result, stem cell therapy is now used as a therapeutic modality in many conditions, and has made its way in dermatology too. Stem cells can be classified on the basis of their source and differentiating capacity. In skin, they are present in the inter-follicular epidermis, hair follicle, dermis and adipose tissue, which help in maintaining normal skin homeostasis and repair and regeneration during injury. In view of their unique properties, they have been employed in treatment of several dermatoses including systemic sclerosis, systemic lupus erythematosus, scleromyxedema, alopecia, Merkel cell carcinoma, pemphigus vulgaris, psoriasis, wound healing, epidermolysis bullosa and even aesthetic medicine, with variable success. The advent of stem cell therapy has undoubtedly brought us closer to curative treatment of disorders previously considered untreatable. Nevertheless, there are multiple lacunae which need to be addressed including ideal patient selection, timing of intervention, appropriate conditioning regimens, post-intervention care and cost effectiveness. Further research in these aspects would help optimize the results of stem cell therapy.
Collapse
Affiliation(s)
- Sujay Khandpur
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Savera Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - D R Gunaabalaji
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Koniali L, Lederer CW, Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells 2021; 10:1492. [PMID: 34198536 PMCID: PMC8231983 DOI: 10.3390/cells10061492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Accessibility of hematopoietic stem cells (HSCs) for the manipulation and repopulation of the blood and immune systems has placed them at the forefront of cell and gene therapy development. Recent advances in genome-editing tools, in particular for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and CRISPR/Cas-derived editing systems, have transformed the gene therapy landscape. Their versatility and the ability to edit genomic sequences and facilitate gene disruption, correction or insertion, have broadened the spectrum of potential gene therapy targets and accelerated the development of potential curative therapies for many rare diseases treatable by transplantation or modification of HSCs. Ongoing developments seek to address efficiency and precision of HSC modification, tolerability of treatment and the distribution and affordability of corresponding therapies. Here, we give an overview of recent progress in the field of HSC genome editing as treatment for inherited disorders and summarize the most significant findings from corresponding preclinical and clinical studies. With emphasis on HSC-based therapies, we also discuss technical hurdles that need to be overcome en route to clinical translation of genome editing and indicate advances that may facilitate routine application beyond the most common disorders.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
10
|
Real World Clinical Experience of Biosimilar G-CSF (Grastofil) for Autologous Peripheral Blood Stem Cell Mobilization: Single Center Experience in Canada Following Early Adoption. ACTA ACUST UNITED AC 2021; 28:1571-1580. [PMID: 33922026 PMCID: PMC8161742 DOI: 10.3390/curroncol28030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
Introduction: Granulocyte colony-stimulating factor (G-CSF) is the first line treatment for mobilization, most commonly using a regimen of daily filgrastim. The use of biosimilars can provide substantial cost savings to the health care system while delivering comparable efficacy outcomes. In 2016, the Saskatchewan Cancer Agency was a leader in Canada, instituting formulary changed from a G-CSF originator product to a cost savings alternative biosimilar for stem cell mobilization prior to autologous stem cell transplant (ASCT) and for engraftment. The purpose of this study was to investigate the clinical comparability of biosimilar G-CSF to its reference product in a real-world clinical setting and to validate use of the biosimilar in mobilization and engraftment-an indication which had been granted by extrapolation. METHODS A retrospective chart review was completed including all patients diagnosed with a hematological malignancy between 2012 and 2018 who underwent ASCT. To assess real-world outcomes across a diverse population, successful CD34+ stem cell collection was compared between patients mobilized with originator filgrastim, Neupogen, and biosimilar filgrastim, Grastofil. Additional comparisons included the number of apheresis required, time to absolute neutrophil count (ANC) engraftment, platelet engraftment, length of hospital stay, and Plerixafor use. RESULTS 217 patients were mobilized and transplanted during the study period. There was no statistically significant difference in success rate between patients mobilized with biosimilar filgrastim and those who had received originator G-CSF (100% vs. 92.4%, p = 0.075). Neither disease type, nor concurrent chemomobilization regimen resulted in a detectable difference between the two G-CSF products in successful stem cell harvest. Engraftment was highly similar between groups, as demonstrated by ANC recovery (11.6 days Neupogen vs. 11.6 days Grastofil), platelet recovery (14.0 days Neupogen vs. 14.2 days Grastofil), and total length of hospital stay (22.4 days Neupogen vs. 22.3 days Grastofil). No statistically significant difference in adjunctive use of Plerixafor® was observed between Neupogen and Grastofil patients (25.9% vs. 23.4%, p = 0.72). CONCLUSION Extrapolation of indications for biosimilars is justified. This real-world evidence builds upon registrational studies to confirm that no clinically meaningful differences were detected between originator Neupogen and biosimilar Grastofil in the setting of PBSC mobilization and engraftment post ASCT. Biosimilars are as safe and effective as originator products. Implementation across all approved indications without hesitation maximizes cost savings to the provincial system, allowing for more optimal allocation of health care resources.
Collapse
|
11
|
Liu W, Li Y, Wang Q, Su H, Ding K, Shuang Y, Gao S, Zou D, Jing H, Chai Y, Zhang Y, Liu L, Wang C, Liu H, Lin J, Zhu H, Yao C, Yan X, Shang M, Wang S, Chang F, Wang X, Zhu J, Song Y. YF-H-2015005, a CXCR4 Antagonist, for the Mobilization of Hematopoietic Stem Cells in Non-Hodgkin Lymphoma Patients: A Randomized, Controlled, Phase 3 Clinical Trial. Front Med (Lausanne) 2021; 8:609116. [PMID: 33604348 PMCID: PMC7884449 DOI: 10.3389/fmed.2021.609116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background: YF-H-2015005, a novel CXCR4 antagonist, has been proven to increase the quantities of circulating hematopoietic stem cells (HSCs), which results in an adequate collection of HSCs in non-Hodgkin lymphoma (NHL) patients. Methods: This was a multicenter, double-blind, randomized (1:1), placebo-controlled phase III clinical trial. All patients received granulocyte colony-stimulating factor (G-CSF) for up to 8 consecutive days. YF-H-2015005 or placebo was administrated on the evening of day 4 and continued daily for up to 4 days. Apheresis was conducted 9-10 h after each dose of YF-H-2015005 or placebo. The primary endpoint was the proportion of NHL patients procuring ≥5 × 106/kg CD34+ HSCs within ≤4 apheresis sessions. Results: In total, 101 patients with NHL were enrolled. The proportions of patients achieving primary endpoint were 57 and 12% in YF-H-2015005 and placebo groups, respectively (P < 0.001). Moreover, a higher proportion of YF-H-2015005-treated patients reached a minimum target collection of ≥2 × 106/kg CD34+ HSCs in ≤4 apheresis days compared to placebo-treated patients (86 vs. 38%, P < 0.001). Furthermore, the median time to collect ≥2 or 5 × 106/kg CD34+ HSCs were 1 and 3 days in YF-H-2015005-treated patients, but 4 days and not reached in placebo-treated patients, respectively. No severe treatment emergent adverse events were observed in both YF-H-2015005 treatment and placebo groups. Conclusions: YF-H-2015005 plus G-CSF regimen was a tolerable combination with high efficacy, which might be used to rapidly mobilize and collect HSCs in NHL patients.
Collapse
Affiliation(s)
- Weiping Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yufu Li
- Department of Hematology, Henan Cancer Hospital, Zhengzhou, China
| | - Quanshun Wang
- Department of Hematology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hang Su
- Department of Lymphoma, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kaiyang Ding
- Department of Hematology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Yuerong Shuang
- Department of Lymphoma & Hematology, Jiangxi Cancer Hospital, Nanchang, China
| | - Sujun Gao
- Department of Hematology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Dehui Zou
- Department of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Ye Chai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lihong Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunling Wang
- Department of Hematology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, Beijing, China
| | - Jinying Lin
- Department of Hematology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haiyan Zhu
- Department of Hematology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chen Yao
- Department of Medical Statistics, Peking University First Hospital, Beijing, China
| | - Xiaoyan Yan
- Peking University Clinical Research Institute, Beijing, China
| | - Meixia Shang
- Department of Medical Statistics, Peking University First Hospital, Beijing, China
| | - Shufang Wang
- Hefei Yifan Biopharmaceuticals Inc., Economic Development Zone, Hefei, China
| | - Fengyuan Chang
- Hefei Yifan Biopharmaceuticals Inc., Economic Development Zone, Hefei, China
| | - Xiaopei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
12
|
López-Pereira P, Sola Aparicio E, Vicuña Andrés I, Cámara Montejano C, Muñoz Calleja C, Alegre Amor A, Aguado Bueno B. Retrospective comparison between COBE SPECTRA and SPECTRA OPTIA apheresis systems for hematopoietic progenitor cells collection for autologous and allogeneic transplantation in a single center. J Clin Apher 2020; 35:453-459. [PMID: 32798328 DOI: 10.1002/jca.21826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION COBE SPECTRA [COBE] (Terumo, BCT Lakewood CO) apheresis system has been the most used device for hematopoietic progenitor cells (HPC) collection. Recently, it has been replaced by the SPECTRA OPTIA [OPTIA] (Terumo, BCT Lakewood CO) apheresis system. The aim of our study is to compare both methods for HPC collection. MATERIAL AND METHODS We retrospectively compared 302 HPC collection apheresis procedures (115 allogeneic donors and 187 autologous). The study cohort was divided according to the apheresis system used to analyze the differences between COBE and OPTIA, specifically efficacy of apheresis procedure and product characteristics. RESULTS OPTIA collections result in a higher CD34+ collection efficiency in both groups (autologous 45.3% vs 41%, P < .006; allogeneic 54.9% vs 45%, P < .0001). The total of CD34+ cells ×106 /kg recipient collected in the product were comparable in both groups (autologous 2.9 in OPTIA group vs 2.8 in COBE group, P = .344; allogeneic 6.2 in OPTIA group vs 5.8 in COBE group, P = .186). The percentage of platelet loss in autologous donors was significantly lower (35.7% vs 40.8%, P < .01). Regarding quality of the product, we observed a significantly lower hematocrit in products collected with OPTIA in both groups (1.8% vs 4%, P < .0001) as well as significantly lower amount of leukocytes (median 153.4 vs 237.2 × 109 /L in autologous, P < .0001; 239.5 vs 340.2 × 109 /L in allogeneic P < .0001). CONCLUSION Both apheresis systems are comparable in collection of hematopoietic progenitor cells, with significantly higher collection efficiency with the OPTIA system. Collection products obtained with OPTIA contain significantly lower hematocrit and leukocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Adrián Alegre Amor
- Hematology Department, Hospital Universitario La Princesa, Madrid, Spain
| | | |
Collapse
|
13
|
Affiliation(s)
- Anand Padmanabhan
- Medical Sciences Institute and Blood Research Institute, BloodCenter of Wisconsin; Department of Pathology, Medical College of Wisconsin; Milwaukee Wiscosin
| |
Collapse
|
14
|
Herrmann M, Zeiter S, Eberli U, Hildebrand M, Camenisch K, Menzel U, Alini M, Verrier S, Stadelmann VA. Five Days Granulocyte Colony-Stimulating Factor Treatment Increases Bone Formation and Reduces Gap Size of a Rat Segmental Bone Defect: A Pilot Study. Front Bioeng Biotechnol 2018; 6:5. [PMID: 29484293 PMCID: PMC5816045 DOI: 10.3389/fbioe.2018.00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022] Open
Abstract
Bone is an organ with high natural regenerative capacity and most fractures heal spontaneously when appropriate fracture fixation is provided. However, additional treatment is required for patients with large segmental defects exceeding the endogenous healing potential and for patients suffering from fracture non-unions. These cases are often associated with insufficient vascularization. Transplantation of CD34+ endothelial progenitor cells (EPCs) has been successfully applied to promote neovascularization of bone defects, however including extensive ex vivo manipulation of cells. Here, we hypothesized, that treatment with granulocyte colony-stimulating factor (G-CSF) may improve bone healing by mobilization of CD34+ progenitor cells into the circulation, which in turn may facilitate vascularization at the defect site. In this pilot study, we aimed to characterize the different cell populations mobilized by G-CSF and investigate the influence of cell mobilization on the healing of a critical size femoral defect in rats. Cell mobilization was investigated by flow cytometry at different time points after five consecutive daily G-CSF injections. In a pilot study, bone healing of a 4.5-mm critical femoral defect in F344 rats was compared between a saline-treated control group and a G-CSF treatment group. In vivo microcomputed tomography and histology were applied to compare bone formation in both treatment groups. Our data revealed that leukocyte counts show a peak increase at the first day after the last G-CSF injection. In addition, we found that CD34+ progenitor cells, including EPCs, were significantly enriched at day 1, and further increased at day 5 and day 11. Upregulation of monocytes, granulocytes and macrophages peaked at day 1. G-CSF treatment significantly increased bone volume and bone density in the defect, which was confirmed by histology. Our data show that different cell populations are mobilized by G-CSF treatment in cell specific patterns. Although in this pilot study no bridging of the critical defect was observed, significantly improved bone formation by G-CSF treatment was clearly shown.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | | |
Collapse
|
15
|
Bhamidipati PK, Fiala MA, Grossman BJ, DiPersio JF, Stockerl-Goldstein K, Gao F, Uy GL, Westervelt P, Schroeder MA, Cashen AF, Abboud CN, Vij R. Results of a Prospective Randomized, Open-Label, Noninferiority Study of Tbo-Filgrastim (Granix) versus Filgrastim (Neupogen) in Combination with Plerixafor for Autologous Stem Cell Mobilization in Patients with Multiple Myeloma and Non-Hodgkin Lymphoma. Biol Blood Marrow Transplant 2017; 23:2065-2069. [PMID: 28797783 DOI: 10.1016/j.bbmt.2017.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/30/2017] [Indexed: 10/19/2022]
Abstract
Autologous hematopoietic stem cell transplantation (auto-HSCT) improves survival in patients with multiple myeloma (MM) and non-Hodgkin lymphoma (NHL). Traditionally, filgrastim (Neupogen; recombinant G-CSF) has been used in as a single agent or in combination with plerixafor for stem cell mobilization for auto-HSCT. In Europe, a biosimilar recombinant G-CSF (Tevagrastim) has been approved for various indications similar to those of reference filgrastim, including stem cell mobilization for auto-HSCT; however, in the United States, tbo-filgrastim (Granix) is registered under the original biological application and is not approved for stem cell mobilization. In retrospective studies, stem cell mobilization with tbo-filgrastim has shown similar efficacy and toxicity as filgrastim, but no prospective studies have been published to date. We have conducted the first prospective randomized trial comparing the safety and efficacy of tbo-filgrastim in combination with plerixafor with that of filgrastim in combination with plerixafor for stem cell mobilization in patients with MM and NHL. This is a phase 2 prospective randomized (1:1) open-label single-institution noninferiority study of tbo-filgrastim and filgrastim with plerixafor in patients with MM or NHL undergoing auto-HSCT. Here 10 µg/kg/day of tbo-filgrastim/filgrastim was administered s.c. for 5 days (days 1 to 5). On day 4 at approximately 1800 hours, 0.24 mg/kg of plerixafor was administered s.c. Apheresis was performed on day 5 with a target cumulative collection goal of at least 5.0 × 106 CD34+ cells/kg. The primary objective was to compare day 5 CD34+ cells/kg collected. Secondary objectives included other mobilization endpoints, safety, engraftment outcomes, and hospital readmission rate. A total of 97 evaluable patients were enrolled (tbo-filgrastim, n = 46; filgrastim, n = 51). Tbo-filgrastim was not inferior to filgrastim in terms of day 5 CD34+ cell collection (mean, 11.6 ± 6.7 CD34+ cells/kg versus 10.0 ± 6.8 CD34+ cells/kg. Multivariate analysis revealed a trend toward increased mobilization in the tbo-filgrastim arm, but this was not statistically significant. The tbo-filgrastim and filgrastim arms were similar in all secondary endpoints. Tbo-filgrastim is not inferior in efficacy and has similar safety compared to reference filgrastim when used for stem cell mobilization in patients with MM and NHL. Granix can be safely used instead of Neupogen for stem cell collection in patients undergoing auto-HSCT for MM or NHL. The study is registered at https://clinicaltrials.gov/ct2/show/NCT02098109.
Collapse
Affiliation(s)
- Pavan Kumar Bhamidipati
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mark A Fiala
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Brenda J Grossman
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Keith Stockerl-Goldstein
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Geoffrey L Uy
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Peter Westervelt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mark A Schroeder
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Amanda F Cashen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Camille N Abboud
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ravi Vij
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
16
|
Wang X, Rivière I. Genetic Engineering and Manufacturing of Hematopoietic Stem Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:96-105. [PMID: 28480310 PMCID: PMC5415326 DOI: 10.1016/j.omtm.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The marketing approval of genetically engineered hematopoietic stem cells (HSCs) as the first-line therapy for the treatment of severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID) is a tribute to the substantial progress that has been made regarding HSC engineering in the past decade. Reproducible manufacturing of high-quality, clinical-grade, genetically engineered HSCs is the foundation for broadening the application of this technology. Herein, the current state-of-the-art manufacturing platforms to genetically engineer HSCs as well as the challenges pertaining to production standardization and product characterization are addressed in the context of primary immunodeficiency diseases (PIDs) and other monogenic disorders.
Collapse
Affiliation(s)
- Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle Rivière
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
17
|
Allen ES, Stroncek DF, Ren J, Eder AF, West KA, Fry TJ, Lee DW, Mackall CL, Conry-Cantilena C. Autologous lymphapheresis for the production of chimeric antigen receptor T cells. Transfusion 2017; 57:1133-1141. [PMID: 28236305 DOI: 10.1111/trf.14003] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND The first step in manufacturing chimeric antigen receptor (CAR) T cells is to collect autologous CD3+ lymphocytes by apheresis. Patients, however, often have leukopenia or have other disease-related complications. We evaluated the feasibility of collecting adequate numbers of CD3+ cells, risk factors for inadequate collections, and the rate of adverse events. STUDY DESIGN AND METHODS Apheresis lymphocyte collections from patients participating in three CAR T-cell clinical trials were reviewed. Collections were performed on the COBE Spectra by experienced nurses, with the goal of obtaining a minimum of 0.6 × 109 and a target of 2 × 109 CD3+ cells. Preapheresis peripheral blood counts, apheresis parameters, and product cell counts were analyzed. RESULTS Of the 71 collections, 69 (97%) achieved the minimum and 55 (77%) achieved the target. Before apheresis, the 16 patients with yields below the target had significantly lower proportions and absolute numbers of circulating lymphocytes and CD3+ lymphocytes and higher proportions of circulating blasts and NK cells than those who achieved the target (470 × 106 lymphocytes/L vs. 1340 × 106 lymphocytes/L, p = 0.008; 349 × 106 CD3+ cells/L vs. 914 × 106 CD3+ cells/L, p = 0.001; 17.6% blasts vs. 4.55% blasts, p = 0.029). Enrichment of blasts in the product compared to the peripheral blood occurred in four patients, including the two patients whose collections did not yield the minimum number of CD3+ cells. Apheresis complications occurred in 11 patients (15%) and, with one exception, were easily managed in the apheresis clinic. CONCLUSIONS In most patients undergoing CAR T-cell therapy, leukapheresis is well tolerated, and adequate numbers of CD3+ lymphocytes are collected.
Collapse
Affiliation(s)
- Elizabeth S Allen
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, Maryland
| | - David F Stroncek
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, Maryland
| | - Jiaqiang Ren
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, Maryland
| | - Anne F Eder
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, Maryland
| | - Kamille A West
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, Maryland
| | - Terry J Fry
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel W Lee
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Crystal L Mackall
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
18
|
Li XY, Liang ZH, Han C, Wei WJ, Song CL, Zhou LN, Liu Y, Li Y, Ji XF, Liu J. Transplantation of autologous peripheral blood mononuclear cells in the subarachnoid space for amyotrophic lateral sclerosis: a safety analysis of 14 patients. Neural Regen Res 2017; 12:493-498. [PMID: 28469667 PMCID: PMC5399730 DOI: 10.4103/1673-5374.202918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
There is a small amount of clinical data regarding the safety and feasibility of autologous peripheral blood mononuclear cell transplantation into the subarachnoid space for the treatment of amyotrophic lateral sclerosis. The objectives of this retrospective study were to assess the safety and efficacy of peripheral blood mononuclear cell transplantation in 14 amyotrophic lateral sclerosis patients to provide more objective data for future clinical trials. After stem cell mobilization and collection, autologous peripheral blood mononuclear cells (1 × 109) were isolated and directly transplanted into the subarachnoid space of amyotrophic lateral sclerosis patients. The primary outcome measure was incidence of adverse events. Secondary outcome measures were electromyography 1 week before operation and 4 weeks after operation, Functional Independence Measurement, Berg Balance Scale, and Dysarthria Assessment Scale 1 week preoperatively and 1, 2, 4 and 12 weeks postoperatively. There was no immediate or delayed transplant-related cytotoxicity. The number of leukocytes, serum alanine aminotransferase and creatinine levels, and body temperature were within the normal ranges. Radiographic evaluation showed no serious transplant-related adverse events. Muscle strength grade, results of Functional Independence Measurement, Berg Balance Scale, and Dysarthria Assessment Scale were not significantly different before and after treatment. These findings suggest that peripheral blood mononuclear cell transplantation into the subarachnoid space for the treatment of amyotrophic lateral sclerosis is safe, but its therapeutic effect is not remarkable. Thus, a large-sample investigation is needed to assess its efficacy further.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhan-Hua Liang
- Neurological Department, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Chao Han
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wen-Juan Wei
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Chun-Li Song
- Electromyography Department, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Li-Na Zhou
- Electromyography Department, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yang Liu
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ying Li
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiao-Fei Ji
- Neurological Department, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing Liu
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
19
|
Bendall L. Extracellular molecules in hematopoietic stem cell mobilisation. Int J Hematol 2016; 105:118-128. [PMID: 27826715 DOI: 10.1007/s12185-016-2123-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells are a remarkable resource currently used for the life saving treatment, hematopoietic stem cell transplantation. Today, hematopoietic stem cells are primarily obtained from mobilized peripheral blood following treatment of the donor with the cytokine G-CSF, and in some settings, chemotherapy and/or the CXCR4 antagonist plerixafor. The collection of hematopoietic stem cells is contingent on adequate and timely mobilization of these cells into the peripheral blood. The use of healthy donors, particularly when unrelated to the patient, requires mobilization strategies be safe for the donor. While current mobilization strategies are largely successful, adequate mobilization fails to occur in a significant portion of donors. Understanding the mechanisms involved in the egress of stem cells from the bone marrow provides opportunities to further improve the process of collecting hematopoietic stem cells. Here, the role extracellular components of the blood and bone marrow in the mobilization process are discussed.
Collapse
Affiliation(s)
- Linda Bendall
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, Sydney, NSW, 2145, Australia.
| |
Collapse
|