1
|
Vetro A, Pelorosso C, Balestrini S, Masi A, Hambleton S, Argilli E, Conti V, Giubbolini S, Barrick R, Bergant G, Writzl K, Bijlsma EK, Brunet T, Cacheiro P, Mei D, Devlin A, Hoffer MJV, Machol K, Mannaioni G, Sakamoto M, Menezes MP, Courtin T, Sherr E, Parra R, Richardson R, Roscioli T, Scala M, von Stülpnagel C, Smedley D, Torella A, Tohyama J, Koichihara R, Hamada K, Ogata K, Suzuki T, Sugie A, van der Smagt JJ, van Gassen K, Valence S, Vittery E, Malone S, Kato M, Matsumoto N, Ratto GM, Guerrini R. Stretch-activated ion channel TMEM63B associates with developmental and epileptic encephalopathies and progressive neurodegeneration. Am J Hum Genet 2023; 110:1356-1376. [PMID: 37421948 PMCID: PMC10432263 DOI: 10.1016/j.ajhg.2023.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.
Collapse
Affiliation(s)
- Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Simona Balestrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Emanuela Argilli
- Department of Neurology and Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Valerio Conti
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Simone Giubbolini
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, Pisa, Italy
| | - Rebekah Barrick
- Division of Metabolic Disorders, Children's Hospital of Orange County (CHOC), Orange, CA, USA
| | - Gaber Bergant
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Theresa Brunet
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany; Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, LMU - University of Munich, München, Germany
| | - Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Anita Devlin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004 Japan
| | - Manoj P Menezes
- Department of Neurology, The Children's Hospital at Westmead and the Children's Hospital at Westmead Clinical School, University of Sydney, Westmead NSW, Australia
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Elliott Sherr
- Department of Neurology and Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Riccardo Parra
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, Pisa, Italy
| | - Ruth Richardson
- Northern Genetics Service, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle, UK
| | - Tony Roscioli
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW 2031, Australia; Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Celina von Stülpnagel
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, LMU - University of Munich, München, Germany; Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Annalaura Torella
- Department of Precision Medicine, University "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Jun Tohyama
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Niigata 950-2085, Japan
| | - Reiko Koichihara
- Department for Child Health and Human Development, Saitama Children's Medical Center, Saitama 330-8777, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stephanie Valence
- Centre de référence Maladies Rares "Déficience intellectuelle de cause rare," Sorbonne Université, Paris, France; Département de Neuropédiatrie, Hôpital Armand Trousseau, APHP, Sorbonne Université, Paris, France
| | - Emma Vittery
- Northern Genetics Service, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle, UK
| | - Stephen Malone
- Department of Neurosciences, Queensland Children's Hospital, Brisbane QLD, Australia; Centre for Advanced Imaging, University of Queensland, St Lucia QLD, Australia
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004 Japan
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, Pisa, Italy; Istituto Neuroscienze CNR, Padova, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy.
| |
Collapse
|
2
|
Jutras C, Sauthier M, Tucci M, Trottier H, Lacroix J, Robitaille N, Ducharme-Crevier L, Du Pont-Thibodeau G. Prevalence and determinants of anemia at discharge in pediatric intensive care survivors. Transfusion 2023; 63:973-981. [PMID: 36907652 DOI: 10.1111/trf.17309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Restrictive transfusion practices are increasingly being followed in pediatric intensive care units (PICU); consequently, more patients are discharged anemic from PICU. Given the possible impact of anemia on long-term neurodevelopmental outcomes, we aim to describe the epidemiology of anemia at PICU discharge in a mixed (pediatric and cardiac) cohort of PICU survivors and to characterize risk factors for anemia. STUDY DESIGN AND METHODS We performed a retrospective cohort study in the PICU of a multidisciplinary tertiary-care university-affiliated center. All consecutive PICU survivors for whom a hemoglobin level was available at PICU discharge were included. Baseline characteristics and hemoglobin levels were extracted from an electronic medical records database. RESULTS From January 2013 to January 2018, 4750 patients were admitted to the PICU (97.1% survival); discharge hemoglobin levels were available for 4124 patients. Overall, 50.9% (n = 2100) were anemic at PICU discharge. Anemia at PICU discharge was also common in the cardiac surgery population (53.3%), mainly in acyanotic patients; only 24.6% of cyanotic patients were anemic according to standard definitions of anemia. Cardiac surgery patients were transfused more often and at higher hemoglobin levels than medical and non-cardiac surgery patients. Anemia at admission was the strongest predictor of anemia at discharge (odds ratios (OR): 6.51, 95% confidence interval (CI:5.40;7.85)). DISCUSSION Half of PICU survivors are anemic at discharge. Further studies are required to determine the course of anemia after discharge and to ascertain whether anemia is associated with adverse long-term outcomes.
Collapse
Affiliation(s)
- Camille Jutras
- Department of Pediatrics, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Michaël Sauthier
- Department of Pediatrics, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Marisa Tucci
- Department of Pediatrics, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Helen Trottier
- Public Health School, Université de Montréal and Research Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Jacques Lacroix
- Department of Pediatrics, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Nancy Robitaille
- Department of Pediatrics, CHU Sainte-Justine, Montréal, Québec, Canada.,Public Health School, Université de Montréal and Research Center, CHU Sainte-Justine, Montréal, Québec, Canada.,Héma-Québec, Montréal, Québec, Canada
| | | | | |
Collapse
|