1
|
Pereira H, Niederer S, Rinaldi CA. Electrocardiographic imaging for cardiac arrhythmias and resynchronization therapy. Europace 2020; 22:euaa165. [PMID: 32754737 PMCID: PMC7544539 DOI: 10.1093/europace/euaa165] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Use of the 12-lead electrocardiogram (ECG) is fundamental for the assessment of heart disease, including arrhythmias, but cannot always reveal the underlying mechanism or the location of the arrhythmia origin. Electrocardiographic imaging (ECGi) is a non-invasive multi-lead ECG-type imaging tool that enhances conventional 12-lead ECG. Although it is an established technology, its continuous development has been shown to assist in arrhythmic activation mapping and provide insights into the mechanism of cardiac resynchronization therapy (CRT). This review addresses the validity, reliability, and overall feasibility of ECGi for use in a diverse range of arrhythmias. A systematic search limited to full-text human studies published in peer-reviewed journals was performed through Medline via PubMed, using various combinations of three key concepts: ECGi, arrhythmia, and CRT. A total of 456 studies were screened through titles and abstracts. Ultimately, 42 studies were included for literature review. Evidence to date suggests that ECGi can be used to provide diagnostic insights regarding the mechanistic basis of arrhythmias and the location of arrhythmia origin. Furthermore, ECGi can yield valuable information to guide therapeutic decision-making, including during CRT. Several studies have used ECGi as a diagnostic tool for atrial and ventricular arrhythmias. More recently, studies have tested the value of this technique in predicting outcomes of CRT. As a non-invasive method for assessing cardiovascular disease, particularly arrhythmias, ECGi represents a significant advancement over standard procedures in contemporary cardiology. Its full potential has yet to be fully explored.
Collapse
Affiliation(s)
- Helder Pereira
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
- Cardiac Physiology Services—Clinical Investigation Centre, Bupa Cromwell Hospital, London, UK
| | - Steven Niederer
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
| | - Christopher A Rinaldi
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
- Cardiovascular Department, Guys and St Thomas NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Bear LR, LeGrice IJ, Sands GB, Lever NA, Loiselle DS, Paterson DJ, Cheng LK, Smaill BH. How Accurate Is Inverse Electrocardiographic Mapping? A Systematic In Vivo Evaluation. Circ Arrhythm Electrophysiol 2019; 11:e006108. [PMID: 29700057 DOI: 10.1161/circep.117.006108] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inverse electrocardiographic mapping reconstructs cardiac electrical activity from recorded body surface potentials. This noninvasive technique has been used to identify potential ablation targets. Despite this, there has been little systematic evaluation of its reliability. METHODS Torso and ventricular epicardial potentials were recorded simultaneously in anesthetized, closed-chest pigs (n=5), during sinus rhythm, epicardial, and endocardial ventricular pacing (70 records in total). Body surface and cardiac electrode positions were determined and registered using magnetic resonance imaging. Epicardial potentials were reconstructed during ventricular activation using experiment-specific magnetic resonance imaging-based thorax models, with homogeneous or inhomogeneous (lungs, skeletal muscle, fat) electrical properties. Coupled finite/boundary element methods and a meshless approach based on the method of fundamental solutions were compared. Inverse mapping underestimated epicardial potentials >2-fold (P<0.0001). RESULTS Mean correlation coefficients for reconstructed epicardial potential distributions ranged from 0.60±0.08 to 0.64±0.07 across all methods. Epicardial electrograms were recovered with reasonable fidelity at ≈50% of sites (median correlation coefficient, 0.69-0.72), but variation was substantial. General activation spread was reproduced (median correlation coefficient, 0.72-0.78 for activation time maps after spatio-temporal smoothing). Epicardial foci were identified with a median location error ≈16 mm (interquartile range, 9-29 mm). Inverse mapping with meshless method of fundamental solutions was better than with finite/boundary element methods, and the latter were not improved by inclusion of inhomogeneous torso electrical properties. CONCLUSIONS Inverse potential mapping provides useful information on the origin and spread of epicardial activation. However the spatio-temporal variability of recovered electrograms limit resolution and must constrain the accuracy with which arrhythmia circuits can be identified independently using this approach.
Collapse
Affiliation(s)
- Laura R Bear
- Auckland Bioengineering Institute (L.R.B., I.J.L., G.B.S., N.A.L., D.S.L., D.J.P., L.K.C., B.H.S.) .,University of Auckland, New Zealand. IHULIRYC, Fondation Bordeaux Université, France (L.R.B.).,Université de Bordeaux, France (L.R.B.).,Inserm, U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, France (L.R.B.)
| | - Ian J LeGrice
- Auckland Bioengineering Institute (L.R.B., I.J.L., G.B.S., N.A.L., D.S.L., D.J.P., L.K.C., B.H.S.).,Department of Physiology (I.J.L., D.S.L., D.J.P., B.H.S.)
| | - Gregory B Sands
- Auckland Bioengineering Institute (L.R.B., I.J.L., G.B.S., N.A.L., D.S.L., D.J.P., L.K.C., B.H.S.)
| | - Nigel A Lever
- Auckland Bioengineering Institute (L.R.B., I.J.L., G.B.S., N.A.L., D.S.L., D.J.P., L.K.C., B.H.S.).,and Department of Medicine (N.A.L.).,Auckland City Hospital, New Zealand (N.A.L.)
| | - Denis S Loiselle
- Auckland Bioengineering Institute (L.R.B., I.J.L., G.B.S., N.A.L., D.S.L., D.J.P., L.K.C., B.H.S.).,Department of Physiology (I.J.L., D.S.L., D.J.P., B.H.S.)
| | - David J Paterson
- Auckland Bioengineering Institute (L.R.B., I.J.L., G.B.S., N.A.L., D.S.L., D.J.P., L.K.C., B.H.S.).,Department of Physiology (I.J.L., D.S.L., D.J.P., B.H.S.).,Department of Physiology, Anatomy, and Genetics, University of Oxford, United Kingdom (D.J.P.)
| | - Leo K Cheng
- Auckland Bioengineering Institute (L.R.B., I.J.L., G.B.S., N.A.L., D.S.L., D.J.P., L.K.C., B.H.S.)
| | - Bruce H Smaill
- Auckland Bioengineering Institute (L.R.B., I.J.L., G.B.S., N.A.L., D.S.L., D.J.P., L.K.C., B.H.S.).,Department of Physiology (I.J.L., D.S.L., D.J.P., B.H.S.)
| |
Collapse
|
3
|
Cheniti G, Vlachos K, Pambrun T, Hooks D, Frontera A, Takigawa M, Bourier F, Kitamura T, Lam A, Martin C, Dumas-Pommier C, Puyo S, Pillois X, Duchateau J, Klotz N, Denis A, Derval N, Jais P, Cochet H, Hocini M, Haissaguerre M, Sacher F. Atrial Fibrillation Mechanisms and Implications for Catheter Ablation. Front Physiol 2018; 9:1458. [PMID: 30459630 PMCID: PMC6232922 DOI: 10.3389/fphys.2018.01458] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023] Open
Abstract
AF is a heterogeneous rhythm disorder that is related to a wide spectrum of etiologies and has broad clinical presentations. Mechanisms underlying AF are complex and remain incompletely understood despite extensive research. They associate interactions between triggers, substrate and modulators including ionic and anatomic remodeling, genetic predisposition and neuro-humoral contributors. The pulmonary veins play a key role in the pathogenesis of AF and their isolation is associated to high rates of AF freedom in patients with paroxysmal AF. However, ablation of persistent AF remains less effective, mainly limited by the difficulty to identify the sources sustaining AF. Many theories were advanced to explain the perpetuation of this form of AF, ranging from a single localized focal and reentrant source to diffuse bi-atrial multiple wavelets. Translating these mechanisms to the clinical practice remains challenging and limited by the spatio-temporal resolution of the mapping techniques. AF is driven by focal or reentrant activities that are initially clustered in a relatively limited atrial surface then disseminate everywhere in both atria. Evidence for structural remodeling, mainly represented by atrial fibrosis suggests that reentrant activities using anatomical substrate are the key mechanism sustaining AF. These reentries can be endocardial, epicardial, and intramural which makes them less accessible for mapping and for ablation. Subsequently, early interventions before irreversible remodeling are of major importance. Circumferential pulmonary vein isolation remains the cornerstone of the treatment of AF, regardless of the AF form and of the AF duration. No ablation strategy consistently demonstrated superiority to pulmonary vein isolation in preventing long term recurrences of atrial arrhythmias. Further research that allows accurate identification of the mechanisms underlying AF and efficient ablation should improve the results of PsAF ablation.
Collapse
Affiliation(s)
- Ghassen Cheniti
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France.,Cardiology Department, Hopital Sahloul, Universite de Sousse, Sousse, Tunisia
| | - Konstantinos Vlachos
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Thomas Pambrun
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Darren Hooks
- Cardiology Department, Wellington Hospital, Wellington, New Zealand
| | - Antonio Frontera
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Masateru Takigawa
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Felix Bourier
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Takeshi Kitamura
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Anna Lam
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Claire Martin
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | | | - Stephane Puyo
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Xavier Pillois
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France
| | - Josselin Duchateau
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Nicolas Klotz
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Arnaud Denis
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Nicolas Derval
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Pierre Jais
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Hubert Cochet
- Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France.,Department of Cardiovascular Imaging, Hopital Haut Leveque, Bordeaux, France
| | - Meleze Hocini
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Michel Haissaguerre
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| | - Frederic Sacher
- Cardiac Electrophysiology Department, Hopital Haut Leveque, Bordeaux, France.,Electrophysiology and Heart Modeling Institute (LIRYC), Bordeaux University, Pessac, France
| |
Collapse
|
4
|
Cluitmans M, Brooks DH, MacLeod R, Dössel O, Guillem MS, van Dam PM, Svehlikova J, He B, Sapp J, Wang L, Bear L. Validation and Opportunities of Electrocardiographic Imaging: From Technical Achievements to Clinical Applications. Front Physiol 2018; 9:1305. [PMID: 30294281 PMCID: PMC6158556 DOI: 10.3389/fphys.2018.01305] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/29/2018] [Indexed: 11/23/2022] Open
Abstract
Electrocardiographic imaging (ECGI) reconstructs the electrical activity of the heart from a dense array of body-surface electrocardiograms and a patient-specific heart-torso geometry. Depending on how it is formulated, ECGI allows the reconstruction of the activation and recovery sequence of the heart, the origin of premature beats or tachycardia, the anchors/hotspots of re-entrant arrhythmias and other electrophysiological quantities of interest. Importantly, these quantities are directly and non-invasively reconstructed in a digitized model of the patient's three-dimensional heart, which has led to clinical interest in ECGI's ability to personalize diagnosis and guide therapy. Despite considerable development over the last decades, validation of ECGI is challenging. Firstly, results depend considerably on implementation choices, which are necessary to deal with ECGI's ill-posed character. Secondly, it is challenging to obtain (invasive) ground truth data of high quality. In this review, we discuss the current status of ECGI validation as well as the major challenges remaining for complete adoption of ECGI in clinical practice. Specifically, showing clinical benefit is essential for the adoption of ECGI. Such benefit may lie in patient outcome improvement, workflow improvement, or cost reduction. Future studies should focus on these aspects to achieve broad adoption of ECGI, but only after the technical challenges have been solved for that specific application/pathology. We propose 'best' practices for technical validation and highlight collaborative efforts recently organized in this field. Continued interaction between engineers, basic scientists, and physicians remains essential to find a hybrid between technical achievements, pathological mechanisms insights, and clinical benefit, to evolve this powerful technique toward a useful role in clinical practice.
Collapse
Affiliation(s)
- Matthijs Cluitmans
- Department of Cardiology, Cardiovascular Research Institute Maastricht Maastricht University, Maastricht, Netherlands
| | - Dana H. Brooks
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Rob MacLeod
- Biomedical Engineering Department, Scientific Computing and Imaging Institute (SCI), and Cardiovascular Research and Training Institute (CVRTI), The University of Utah, Salt Lake City, UT, United States
| | - Olaf Dössel
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Peter M. van Dam
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Jana Svehlikova
- Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bin He
- Department of Biomedical Engineering Carnegie Mellon University, Pittsburgh, PA, United States
| | - John Sapp
- QEII Health Sciences Centre and Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Linwei Wang
- Rochester Institute of Technology, Rochester, NY, United States
| | - Laura Bear
- IHU LIRYC, Fondation Bordeaux Université, Inserm U1045 and Université de Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Bear L, Cuculich PS, Bernus O, Efimov I, Dubois R. Introduction to noninvasive cardiac mapping. Card Electrophysiol Clin 2015; 7:1-16. [PMID: 25784020 DOI: 10.1016/j.ccep.2014.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From the dawn of the twentieth century, the electrocardiogram (ECG) has revolutionized the way clinical cardiology has been practiced, and it has become the cornerstone of modern medicine today. Driven by clinical and research needs for a more precise understanding of cardiac electrophysiology beyond traditional ECG, inverse solution electrocardiography has been developed, tested, and validated. This article outlines the important progress from ECG development, through more extensive measurement of body surface potentials, and the fundamental leap to solving the inverse problem of electrocardiography, with a focus on mathematical methods and experimental validation.
Collapse
Affiliation(s)
- Laura Bear
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France; Inserm U1045, Cardiothoracic Research Center, 146 rue Léo-Saignat, Bordeaux Cedex 33076, France
| | - Phillip S Cuculich
- Cardiovascular Diseases and Electrophysiology, Barnes-Jewish Hospital, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8086, St Louis, MO 63110, USA.
| | - Olivier Bernus
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France; Inserm U1045, Cardiothoracic Research Center, 146 rue Léo-Saignat, Bordeaux Cedex 33076, France
| | - Igor Efimov
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France; Department of Biomedical Engineering, Washington University School of Medicine, 390E Whitaker Hall, One Brookings Drive, St. Louis, MO 63130, USA
| | - Rémi Dubois
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France; Inserm U1045, Cardiothoracic Research Center, 146 rue Léo-Saignat, Bordeaux Cedex 33076, France
| |
Collapse
|
6
|
Noninvasive reconstruction of cardiac electrical activity: update on current methods, applications and challenges. Neth Heart J 2015; 23:301-11. [PMID: 25896779 PMCID: PMC4446282 DOI: 10.1007/s12471-015-0690-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Electrical activity at the level of the heart muscle can be noninvasively reconstructed from body-surface electrocardiograms (ECGs) and patient-specific torso-heart geometry. This modality, coined electrocardiographic imaging, could fill the gap between the noninvasive (low-resolution) 12-lead ECG and invasive (high-resolution) electrophysiology studies. Much progress has been made to establish electrocardiographic imaging, and clinical studies appear with increasing frequency. However, many assumptions and model choices are involved in its execution, and only limited validation has been performed. In this article, we will discuss the technical details, clinical applications and current limitations of commonly used methods in electrocardiographic imaging. It is important for clinicians to realise the influence of certain assumptions and model choices for correct and careful interpretation of the results. This, in combination with more extensive validation, will allow for exploitation of the full potential of noninvasive electrocardiographic imaging as a powerful clinical tool to expedite diagnosis, guide therapy and improve risk stratification.
Collapse
|
7
|
Abstract
Noninvasive electrocardiographic imaging (ECGI; also called ECG mapping) can reconstruct potentials, electrograms, activation sequences, and repolarization patterns on the epicardial surface of the heart with high resolution. ECGI can possibly be used to quantify synchrony, identify potential responders/nonresponders to cardiac resynchronization therapy, and guide electrode placement for effective resynchronization therapy. This article provides a brief description of the ECGI procedure and selected previously published examples of its application in important clinical conditions, including heart failure, cardiac resynchronization therapy, atrial arrhythmias, and ventricular tachycardia.
Collapse
Affiliation(s)
- Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center, Washington University, Campus Box 1097, St Louis, MO 63130-4899, USA.
| | | |
Collapse
|
8
|
Gutbrod SR, Sulkin MS, Rogers JA, Efimov IR. Patient-specific flexible and stretchable devices for cardiac diagnostics and therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:244-51. [PMID: 25106701 DOI: 10.1016/j.pbiomolbio.2014.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Abstract
Advances in material science techniques and pioneering circuit designs have led to the development of electronic membranes that can form intimate contacts with biological tissues. In this review, we present the range of geometries, sensors, and actuators available for custom configurations of electronic membranes in cardiac applications. Additionally, we highlight the desirable mechanics achieved by such devices that allow the circuits and substrates to deform with the beating heart. These devices unlock opportunities to collect continuous data on the electrical, metabolic, and mechanical state of the heart as well as a platform on which to develop high definition therapeutics.
Collapse
Affiliation(s)
- Sarah R Gutbrod
- Biomedical Engineering, Washington University in St Louis, USA
| | | | - John A Rogers
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA
| | - Igor R Efimov
- Biomedical Engineering, Washington University in St Louis, USA.
| |
Collapse
|