1
|
Lundahl G, Gransberg L, Bergqvist G, Bergström G, Bergfeldt L. Automatic identification of a stable QRST complex for non-invasive evaluation of human cardiac electrophysiology. PLoS One 2020; 15:e0239074. [PMID: 32941513 PMCID: PMC7498068 DOI: 10.1371/journal.pone.0239074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A vectorcardiography approach to electrocardiology contributes to the non-invasive assessment of electrical heterogeneity in the ventricles of the heart and to risk stratification for cardiac events including sudden cardiac death. The aim of this study was to develop an automatic method that identifies a representative QRST complex (QRSonset to Tend) from a Frank vectorcardiogram (VCG). This method should provide reliable measurements of morphological VCG parameters and signal when such measurements required manual scrutiny. METHODS Frank VCG was recorded in a population-based sample of 1094 participants (550 women) 50-65 years old as part of the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot. Standardized supine rest allowing heart rate stabilization and adaptation of ventricular repolarization preceded a recording period lasting ≥5 minutes. In the Frank VCG a recording segment during steady-state conditions and with good signal quality was selected based on QRST variability. In this segment a representative signal-averaged QRST complex from cardiac cycles during 10s was selected. Twenty-eight morphological parameters were calculated including both conventional conduction intervals and VCG-derived parameters. The reliability and reproducibility of these parameters were evaluated when using completely automatic and automatic but manually edited annotation points. RESULTS In 1080 participants (98.7%) our automatic method reliably selected a representative QRST complex where its instability measure effectively identified signal variability due to both external disturbances ("noise") and physiologic and pathophysiologic variability, such as e.g. sinus arrhythmia and atrial fibrillation. There were significant sex-related differences in 24 of 28 VCG parameters. Some VCG parameters were insensitive to the instability value, while others were moderately sensitive. CONCLUSION We developed an automatic process for identification of a signal-averaged QRST complex suitable for morphologic measurements which worked reliably in 99% of participants. This process is applicable for all non-invasive analyses of cardiac electrophysiology including risk stratification for cardiac death based on such measurements.
Collapse
Affiliation(s)
- Gunilla Lundahl
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Gransberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gabriel Bergqvist
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lennart Bergfeldt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
2
|
Axelsson KJ, Brännlund A, Gransberg L, Lundahl G, Vahedi F, Bergfeldt L. Adaptation of ventricular repolarization duration and dispersion during changes in heart rate induced by atrial stimulation. Ann Noninvasive Electrocardiol 2019; 25:e12713. [PMID: 31707762 PMCID: PMC7358894 DOI: 10.1111/anec.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The duration of ventricular repolarization (VR) and its spatial and temporal heterogeneity are central elements in arrhythmogenesis. We studied the adaptation of VR duration and dispersion and their relationship in healthy human subjects during atrial pacing. METHODS Patients 20-50 years of age who were scheduled for ablation of supraventricular tachycardia without preexcitation but otherwise healthy were eligible. Vectorcardiography recordings with Frank leads were used for data collection. Incremental atrial pacing from a coronary sinus electrode was performed by decrements of 10ms/cycle from just above sinus rate, and then kept at a fixed heart rate (HR) just below the Wenckebach rate for ≥5min and then stopped. VR duration was measured as QT and VR dispersion as T area, T amplitude and ventricular gradient. The primary measure (T90 End) was the time to reach 90% change from baseline to the steady state value during and after pacing. RESULTS A complete study protocol was accomplished in 9 individuals (6 women). VR duration displayed a monophasic adaptation during HR acceleration lasting on average 20s. The median (Q1-Q3) T90 End for QT was 85s (51-104), a delay by a factor >4. All dispersion measures displayed a tri-phasic response pattern during HR acceleration and T90 End was 3-5 times shorter than for VR duration. CONCLUSIONS Even during close to "physiological" conditions, complex and differing response patterns in VR duration and dispersion measures followed changes in HR. Extended knowledge about these responses in disease conditions might assist in risk evaluation and finding therapeutic alternatives.
Collapse
Affiliation(s)
- Karl-Jonas Axelsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adam Brännlund
- Department of Anesthesiology and Intensive Care Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lennart Gransberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunilla Lundahl
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Farzad Vahedi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lennart Bergfeldt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Baumert M, Porta A, Vos MA, Malik M, Couderc JP, Laguna P, Piccirillo G, Smith GL, Tereshchenko LG, Volders PGA. QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology. Europace 2016; 18:925-44. [PMID: 26823389 PMCID: PMC4905605 DOI: 10.1093/europace/euv405] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
This consensus guideline discusses the electrocardiographic phenomenon of beat-to-beat QT interval variability (QTV) on surface electrocardiograms. The text covers measurement principles, physiological basis, and clinical value of QTV. Technical considerations include QT interval measurement and the relation between QTV and heart rate variability. Research frontiers of QTV include understanding of QTV physiology, systematic evaluation of the link between QTV and direct measures of neural activity, modelling of the QTV dependence on the variability of other physiological variables, distinction between QTV and general T wave shape variability, and assessing of the QTV utility for guiding therapy. Increased QTV appears to be a risk marker of arrhythmic and cardiovascular death. It remains to be established whether it can guide therapy alone or in combination with other risk factors. QT interval variability has a possible role in non-invasive assessment of tonic sympathetic activity.
Collapse
Affiliation(s)
- Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marek Malik
- St Paul's Cardiac Electrophysiology, University of London, and National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Jean-Philippe Couderc
- Heart Research Follow-Up Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Pablo Laguna
- Zaragoza University and CIBER-BBN, Zaragoza, Spain
| | - Gianfranco Piccirillo
- Dipartimento di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, Università 'La Sapienza' Rome, Rome, Italy
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Larisa G Tereshchenko
- Oregon Health and Science University, Knight Cardiovascular Institute, Portland, OR, USA
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
4
|
Arini PD, Valverde ER. Beat-to-beat electrocardiographic analysis of ventricular repolarization variability in patients after myocardial infarction. J Electrocardiol 2016; 49:206-13. [DOI: 10.1016/j.jelectrocard.2015.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 11/17/2022]
|
5
|
Cardiac memory: The slippery slope twixt normalcy and pathology. Trends Cardiovasc Med 2015; 25:687-96. [DOI: 10.1016/j.tcm.2015.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/19/2022]
|
6
|
Diamant UB, Vahedi F, Winbo A, Rydberg A, Stattin EL, Jensen SM, Bergfeldt L. Electrophysiological phenotype in the LQTS mutations Y111C and R518X in the KCNQ1 gene. J Appl Physiol (1985) 2013; 115:1423-32. [PMID: 24052033 DOI: 10.1152/japplphysiol.00665.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long QT syndrome is the prototypical disorder of ventricular repolarization (VR), and a genotype-phenotype relation is postulated. Furthermore, although increased VR heterogeneity (dispersion) may be important in the arrhythmogenicity in long QT syndrome, this hypothesis has not been evaluated in humans and cannot be tested by conventional electrocardiography. In contrast, vectorcardiography allows assessment of VR heterogeneity and is more sensitive to VR alterations than electrocardiography. Therefore, vectorcardiography was used to compare the electrophysiological phenotypes of two mutations in the LQT1 gene with different in vitro biophysical properties, and with LQT2 mutation carriers and healthy control subjects. We included 99 LQT1 gene mutation carriers (57 Y111C, 42 R518X) and 19 LQT2 gene mutation carriers. Potassium channel function is in vitro most severely impaired in Y111C. The control group consisted of 121 healthy subjects. QRS, QT, and T-peak to T-end (Tp-e) intervals, measures of the QRS vector and T vector and their relationship, and T-loop morphology parameters were compared at rest. Apart from a longer heart rate-corrected QT interval (QT heart rate corrected according to Bazett) in Y111C mutation carriers, there were no significant differences between the two LQT1 mutations. No signs of increased VR heterogeneity were observed among the LQT1 and LQT2 mutation carriers. QT heart rate corrected according to Bazett and Tp-e were longer, and the Tp-e-to-QT ratio greater in LQT2 than in LQT1 and the control group. In conclusion, there was a marked discrepancy between in vitro potassium channel function and in vivo electrophysiological properties in these two LQT1 mutations. Together with previous observations of the relatively low risk for clinical events in Y111C mutation carriers, our results indicate need for cautiousness in predicting in vivo electrophysiological properties and the propensity for clinical events based on in vitro assessment of ion channel function alone.
Collapse
Affiliation(s)
- Ulla-Britt Diamant
- Department of Public Health and Clinical Medicine, Heart Centre, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
7
|
Instability of ventricular repolarization in long QT syndrome: Is the corrected QT interval sufficient for risk assessment? Heart Rhythm 2013; 10:1176-7. [DOI: 10.1016/j.hrthm.2013.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Indexed: 11/18/2022]
|