1
|
Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y. Chained occurrences of early afterdepolarizations may create a directional triggered activity to initiate reentrant ventricular tachyarrhythmias. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 261:108587. [PMID: 39837062 DOI: 10.1016/j.cmpb.2025.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND AND OBJECTIVE It has been believed that polymorphic ventricular tachycardia (VT) such as torsades de pointes (TdP) seen in patients with long QT syndromes is triggered by creating early afterdepolarization (EAD)-mediated triggered activity (TA). Although the mechanisms creating the TA have been studied intensively, characteristics of the arrhythmogenic (torsadogenic) substrates that link EAD developments to TA formation are still not well understood. METHODS Computer simulations of excitation propagation in a homogenous two-dimensional ventricular tissue with an anisotropic conduction property were performed to characterize torsadogenic substrates that potentially form TA. We examined how the configuration of islands (clusters) of myocytes with synchronously chained occurrence of EADs within the tissue, each EAD cluster size and stimulation from different directions impact the TA creation. RESULTS The presence of EAD clusters within the tissue created local regions of cardiomyocytes maintained at a depolarized membrane potential above 0 mV due to the chained occurrence of EADs. When the local area contained a concave surface border, the TA was created depending on its curvature. We found that the distance of EAD clusters was a critical factor for the development of EAD-mediated TA and polymorphic VT in long QT syndromes, that there existed a region of the distance favorable for the development of TA and VT, and that the TA was always created along the myocardial fiber orientation regardless of stimulating directions. CONCLUSION The chained occurrences of EADs may create a directional TA. Our findings provide deeper understandings of the cardiac arrhythmogenic substrates for preventing and treating arrhythmias.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| | - Takao Shimamoto
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuma Aoji
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| |
Collapse
|
2
|
Chorro FJ, Such-Miquel L, Cuñat S, Arias-Mutis O, Genovés P, Zarzoso M, Alberola A, Such-Belenguer L, Del Canto I. Effects of Eleclazine (GS6615) on the proarrhythmic electrophysiological changes induced by myocardial stretch. Front Physiol 2025; 16:1525836. [PMID: 39958692 PMCID: PMC11825515 DOI: 10.3389/fphys.2025.1525836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/10/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Myocardial stretch is a proarrhythmic factor. Eleclazine (GS6615) is a late sodium current (INaL) inhibitor that has shown protective effects against arrhythmias in various experimental models. Data on its effects during myocardial stretch are lacking. The aim of this study was to investigate the electrophysiological modifications induced by eleclazine basally and during acute ventricular stretch. Methods Left ventricular stretch was induced at baseline and during perfusion with eleclazine in 26 Langendorff rabbit heart preparations. Programmed stimulation and high-resolution mapping techniques were applied using multiple epicardial electrodes. Results At baseline, both the ventricular refractory period measured at a fixed cycle length (250 m) and its surrogate obtained during ventricular fibrillation (VF) decreased significantly during stretch (baseline 128 ± 15 vs. stretch 110 ± 14 m; n = 15; p < 0.001, and baseline 52 ± 13 vs. stretch 44 ± 9 m; n = 11; p < 0.05), while the VF dominant frequency (DF) increased significantly (DF baseline 13 ± 3 vs. stretch 17 ± 5Hz; n = 11; p < 0.01). Eleclazine 1.4 μM prolonged refractoriness, diminished both DF and conduction velocity during the arrhythmia, and avoided the stretch induced variations in refractoriness (baseline 148 ± 19 vs. stretch 150 ± 23 m; n = 15; ns, and baseline 73 ± 15 vs. stretch 77 ± 15 m; n = 11; ns) and in DF (baseline 12 ± 5 vs. stretch 12 ± 3 Hz; ns). The VF complexity index was inversely related to refractoriness (r = -0.64; p < 0.001). Under eleclazine perfusion, the VF activation patterns were less complex, and the arrhythmia stopped in 6 out of 11 experiments (55%; p < 0.05 vs. baseline). Conclusion Eleclazine (GS6615) reduced the proarrhythmic electrophysiological changes induced by myocardial stretch and slowed and simplified activation patterns during VF in the experimental model used.
Collapse
Affiliation(s)
- Francisco J. Chorro
- Department of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Research Institute, Valencia Clinic Hospital (INCLIVA), Valencia, Spain
| | - Luis Such-Miquel
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Samuel Cuñat
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Oscar Arias-Mutis
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Research Institute, Valencia Clinic Hospital (INCLIVA), Valencia, Spain
| | - Patricia Genovés
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Research Institute, Valencia Clinic Hospital (INCLIVA), Valencia, Spain
| | - Manuel Zarzoso
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Antonio Alberola
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Luis Such-Belenguer
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Irene Del Canto
- Biomedical Research Center Network - Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, Madrid, Spain
- Department of Electronic Engineering, University of Valencia, Burjassot, Spain
| |
Collapse
|
3
|
Coleman JA, Doste R, Beltrami M, Argirò A, Coppini R, Olivotto I, Raman B, Bueno-Orovio A. Effects of ranolazine on the arrhythmic substrate in hypertrophic cardiomyopathy. Front Pharmacol 2024; 15:1379236. [PMID: 38659580 PMCID: PMC11039821 DOI: 10.3389/fphar.2024.1379236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Hypertrophic cardiomyopathy (HCM) is a leading cause of lethal arrhythmias in the young. Although the arrhythmic substrate has been hypothesised to be amenable to late Na+ block with ranolazine, the specific mechanisms are not fully understood. Therefore, this study aimed to investigate the substrate mechanisms of safety and antiarrhythmic efficacy of ranolazine in HCM. Methods: Computational models of human tissue and ventricles were used to simulate the electrophysiological behaviour of diseased HCM myocardium for variable degrees of repolarisation impairment, validated against in vitro and clinical recordings. S1-S2 pacing protocols were used to quantify arrhythmic risk in scenarios of (i) untreated HCM-remodelled myocardium and (ii) myocardium treated with 3µM, 6µM and 10µM ranolazine, for variable repolarisation heterogeneity sizes and pacing rates. ECGs were derived from biventricular simulations to identify ECG biomarkers linked to antiarrhythmic effects. Results: 10µM ranolazine given to models manifesting ventricular tachycardia (VT) at baseline led to a 40% reduction in number of VT episodes on pooled analysis of >40,000 re-entry inducibility simulations. Antiarrhythmic efficacy and safety were dependent on the degree of repolarisation impairment, with optimal benefit in models with maximum JTc interval <370 ms. Ranolazine increased risk of VT only in models with severe-extreme repolarisation impairment. Conclusion: Ranolazine efficacy and safety may be critically dependent upon the degree of repolarisation impairment in HCM. For moderate repolarisation impairment, reductions in refractoriness heterogeneity by ranolazine may prevent conduction blocks and re-entry. With severe-extreme disease substrates, reductions of the refractory period can increase re-entry sustainability.
Collapse
Affiliation(s)
- James A. Coleman
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ruben Doste
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Matteo Beltrami
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Alessia Argirò
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Raffaele Coppini
- Department of NeuroFarBa, University of Florence, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
- Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
4
|
Tsuji Y, Yamazaki M, Shimojo M, Yanagisawa S, Inden Y, Murohara T. Mechanisms of torsades de pointes: an update. Front Cardiovasc Med 2024; 11:1363848. [PMID: 38504714 PMCID: PMC10948600 DOI: 10.3389/fcvm.2024.1363848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Torsades de Pointes (TdP) refers to a polymorphic ventricular tachycardia (VT) with undulating QRS axis that occurs in long QT syndrome (LQTS), although the term has been used to describe polymorphic ventricular tachyarrhythmias in which QT intervals are not prolonged, such as short-coupled variant of TdP currently known as short-coupled ventricular fibrillation (VF) and Brugada syndrome. Extensive works on LQTS-related TdP over more than 50 years since it was first recognized by Dessertennes who coined the French term meaning "twisting of the points", have led to current understanding of the electrophysiological mechanism that TdP is initiated by triggered activity due to early afterdepolarization (EAD) and maintained by reentry within a substrate of inhomogeneous repolarization. While a recently emerging notion that steep voltage gradients rather than EADs are crucial to generate premature ventricular contractions provides additions to the initiation mode, the research to elucidate the maintenance mechanism hasn't made much progress. The reentrant activity that produces the specific form of VT is not well characterized. We have conducted optical mapping in a rabbit model of electrical storm by electrical remodeling (QT prolongation) due to chronic complete atrioventricular block and demonstrated that a tissue-island with prolonged refractoriness due to enhanced late Na+ current (INa-L) contributes to the generation of drifting rotors in a unique manner, which may explain the ECG characteristic of TdP. Moreover, we have proposed that the neural Na+ channel NaV1.8-mediated INa-L may be a new player to form the substrate for TdP. Here we discuss TdP mechanisms by comparing the findings in electrical storm rabbits with recently published studies by others in simulation models and human and animal models of LQTS.
Collapse
Affiliation(s)
- Yukiomi Tsuji
- Departments of Cardiovascular Research and Innovation, Cardiology and Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Yamazaki
- Department of Cardiology, Nagano Hospital, Soja and Medical Device Development and Regulation Research Center and Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Masafumi Shimojo
- Departments of Cardiovascular Research and Innovation, Cardiology and Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Yanagisawa
- Departments of Cardiovascular Research and Innovation, Cardiology and Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuya Inden
- Departments of Cardiovascular Research and Innovation, Cardiology and Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Departments of Cardiovascular Research and Innovation, Cardiology and Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y. Theoretical prediction of early afterdepolarization-evoked triggered activity formation initiating ventricular reentrant arrhythmias. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107722. [PMID: 37515880 DOI: 10.1016/j.cmpb.2023.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Excessive prolongation of QT interval on ECGs in patients with congenital/acquired long QT syndrome and heart failure is a sign suggesting the development of early afterdepolarization (EAD), an abnormal repolarization in the action potential of ventricular cardiomyocytes. The development of EAD has been believed to be a trigger for fatal tachyarrhythmia, which can be a risk for sudden cardiac death. The role of EAD in triggering ventricular tachycardia (VT) remains unclear. The aim of this study was to elucidate the mechanism of EAD-induced triggered activity formation that leads to the VT such as Torsades de Pointes. METHODS We investigated the relationship between EAD and tachyarrhythmia initiation by constructing homogeneous myocardial sheet models consisting of the mid-myocardial cell version of a human ventricular myocyte model and performing simulations of excitation propagation. RESULTS A solitary island-like (clustering) occurrence of EADs in the homogeneous myocardial sheet could induce a focal excitation wave. However, reentrant excitation, an entity of tachyarrhythmia, was not able to be triggered regardless of the EAD cluster size when the focal excitation wave formed a repolarization potential difference boundary consisting of only a convex surface. The discontinuous distribution of multiple EAD clusters in the ventricular tissue formed a specific repolarization heterogeneity due to the repolarization potential difference, the shape of which depended on EAD cluster size and placed intervals. We found that the triggered activity was formed in such a manner that the repolarization potential difference boundary included a concave surface. CONCLUSIONS The formation of triggered activity that led to tachyarrhythmia required not only the occurrence of EAD onset-mediated focal excitation wave but also a repolarization heterogeneity-based specific repolarization potential difference boundary shape formed within the tissue.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| | - Takao Shimamoto
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuma Aoji
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| |
Collapse
|
6
|
Amino M, Yamazaki M, Yoshioka K, Kawabe N, Tanaka S, Shimokawa T, Niwa R, Tomii N, Kabuki S, Kunieda E, Yagishita A, Ikari Y, Kodama I. Heavy Ion Irradiation Reduces Vulnerability to Atrial Tachyarrhythmias - Gap Junction and Sympathetic Neural Remodeling. Circ J 2023; 87:1016-1026. [PMID: 36476829 DOI: 10.1253/circj.cj-22-0527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
BACKGROUND Low-invasive stereotactic body radiation therapy is a novel anti-arrhythmic strategy. The mechanisms underlying its effects against ventricular tachycardia/fibrillation (VT/VF) are gradually becoming clear, whereas those underlying atrial tachycardia/fibrillation (AT/AF) remain unknown. This study investigated the effects of carbon ion beam on gap junction expression and sympathetic innervation. METHODS AND RESULTS Atrial and ventricular tachyarrhythmia models was established in 26 hypercholesterolemic (HC) 3-year-old New Zealand white rabbits; 12 rabbits were irradiated with a single 15-Gy carbon ion beam (targeted heavy ion irradiation [THIR]) and 14 were not (HC group). Eight 3-month-old rabbits (Young) were used as a reference group. In vivo induction frequencies in the Young, HC, and HC+THIR groups were 0%, 9.9%, and 1.2%, respectively, for AT/AF and 0%, 7.8%, and 1.2%, respectively, for VT/VF (P<0.01). The conduction velocity of the atria and ventricles on optical mapping was significantly reduced in the HC group; this was reversed in the HC+THIR group. Connexin-40 immunolabelling in the atria was 66.1-78.7% lower in the HC than Young group; this downregulation was less pronounced in the HC+THIR group (by 23.1-44.4%; P<0.01). Similar results were obtained for ventricular connexin-43. Sympathetic nerve densities in the atria and ventricles increased by 41.9-65.3% in the HC vs. Young group; this increase was reversed in the HC+THIR group. CONCLUSIONS Heavy ion radiation reduced vulnerability to AT/AF and VT/VF in HC elderly rabbits and improved cardiac conductivity. The results suggest involvement of connexin-40/43 upregulation and suppression of sympathetic nerve sprouting.
Collapse
Affiliation(s)
- Mari Amino
- Department of Cardiology, Tokai University
- National Institute for Quantum and Radiological Science and Technology
| | - Masatoshi Yamazaki
- Department of Cardiology, Nagano Hospital
- Medical Device Development and Regulation Research Center, The University of Tokyo
| | | | | | | | - Takashi Shimokawa
- National Institute for Quantum and Radiological Science and Technology
| | - Ryoko Niwa
- Research Institute of Environmental Medicine, Nagoya University
| | - Naoki Tomii
- School of Engineering, The University of Tokyo
| | | | | | | | - Yuji Ikari
- Department of Cardiology, Tokai University
| | - Itsuo Kodama
- Research Institute of Environmental Medicine, Nagoya University
| |
Collapse
|
7
|
Fassina D, M Costa C, Bishop M, Plank G, Whitaker J, Harding SE, Niederer SA. Assessing the arrhythmogenic risk of engineered heart tissue patches through in silico application on infarcted ventricle models. Comput Biol Med 2023; 154:106550. [PMID: 36701966 DOI: 10.1016/j.compbiomed.2023.106550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Post myocardial infarction (MI) ventricles contain fibrotic tissue and may have disrupted electrical properties, both of which predispose to an increased risk of life-threatening arrhythmias. Application of epicardial patches obtained from human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a potential long-term therapy to treat heart failure resulting from post MI remodelling. However, whether the introduction of these patches is anti- or pro-arrhythmic has not been studied. METHODS We studied arrhythmic risk using in silico engineered heart tissue (EHT) patch engraftment on human post-MI ventricular models. Two patient models were studied, including one with a large dense scar and one with an apparent channel of preserved viability bordered on both sides by scar. In each heart model a virtual EHT patch was introduced as a layer of viable tissue overlying the scarred area, with hiPSC-CMs electrophysiological properties. The incidence of re-entrant and sustained activation in simulations with and without EHT patches was assessed and the arrhythmia inducibility compared in the context of different EHT patch properties (conduction velocity (CV) and action potential duration (APD)). The impact of the EHT patch on the likelihood of focal ectopic impulse propagation was estimated by assessing the minimum stimulus strength and duration required to generate a propagating impulse in the scar border zone (BZ) with and without patch. RESULTS We uncovered two main mechanisms by which ventricular tachycardia (VT) risk could be either augmented or attenuated by the interaction of the patch with the tissue. In the case of isthmus-related VT, our simulations predict that EHT patches can prevent the induction of VT when the, generally longer, hiPSC-CMs APD is reduced towards more physiological values. In the case of large dense scar, we found that, an EHT patch with CV similar to the host myocardium does not promote VT, while EHT patches with lower CV increase the risk of VT, by promoting both non-sustained and sustained re-entry. Finally, our simulations indicate that electrically coupled EHT patches reduce the likelihood of propagation of focal ectopic impulses. CONCLUSIONS The introduction of EHT patches as a treatment for heart failure has the potential to augment or attenuate the risk of ventricular arrhythmias, and variations in the anatomic configuration of the substrate, the functional properties of the BZ and the electrophysiologic properties of the patch itself will determine the overall impact. Planning for delivery of this therapy will need to consider the possible impact on arrhythmia.
Collapse
Affiliation(s)
- Damiano Fassina
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Caroline M Costa
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Martin Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | | | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Elsokkari I, Tsuji Y, Sapp JL, Nattel S. Recent insights into mechanisms and clinical approaches to electrical storm. Can J Cardiol 2021; 38:439-453. [PMID: 34979281 DOI: 10.1016/j.cjca.2021.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Electrical storm, characterized by repetitive ventricular tachycardia/fibrillation (VT/VF) over a short period, is becoming commoner with widespread use of implantable cardioverter-defibrillator (ICD) therapy. Electrical storm, sometimes called "arrhythmic storm" or "VT-storm", is usually a medical emergency requiring hospitalization and expert management, and significantly affects short- and long-term outcomes. This syndrome typically occurs in patients with underlying structural heart disease (ischemic or non-ischemic cardiomyopathy) or inherited channelopathies. Triggers for electrical storm should be sought but are often unidentifiable. Initial management is dictated by the hemodynamic status, while subsequent management typically involves ICD interrogation and reprogramming to reduce recurrent shocks, identification/management of triggers like electrolyte abnormalities, myocardial ischemia, or decompensated heart failure, and antiarrhythmic-drug therapy or catheter ablation. Sympathetic nervous system activation is central to the initiation and maintenance of arrhythmic storm, so autonomic modulation is a cornerstone of management. Sympathetic inhibition can be achieved with medications (particularly beta-adrenoreceptor blockers), deep sedation, or cardiac sympathetic denervation. More definitive management targets the underlying ventricular arrhythmia substrate to terminate and prevent recurrent arrhythmia. Arrhythmia targeting can be achieved with antiarrhythmic medications, catheter ablation or more novel therapies such as stereotactic radiation therapy that targets the arrhythmic substrate. Mechanistic studies point to adrenergic activation and other direct consequences of ICD-shocks in promoting further arrhythmogenesis and hypocontractility. Here, we review the pathophysiologic mechanisms, clinical features, prognosis, and therapeutic options for electrical storm. We also outline a clinical approach to this challenging and complex condition, along with its mechanistic basis.
Collapse
Affiliation(s)
- Ihab Elsokkari
- University of Sydney, Nepean Blue Mountains local health district, Australia
| | - Yukiomi Tsuji
- Department of Physiology of Visceral Function, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - John L Sapp
- Dalhousie University, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.
| | - Stanley Nattel
- Departments of Medicine and Research Center, Montreal Heart Institute and Université de Montréal and Pharmacology and Therapeutics McGill University, Montreal, Quebec, Canada; Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany; IHU LIYRC Institute, Bordeaux, France.
| |
Collapse
|