1
|
Xiang Z, Yin X, Wei L, Peng M, Zhu Q, Lu X, Guo J, Zhang J, Li X, Zou Y. LILRB4 Checkpoint for Immunotherapy: Structure, Mechanism and Disease Targets. Biomolecules 2024; 14:187. [PMID: 38397424 PMCID: PMC10887124 DOI: 10.3390/biom14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
LILRB4, a myeloid inhibitory receptor belonging to the family of leukocyte immunoglobulin-like receptors (LILRs/LIRs), plays a pivotal role in the regulation of immune tolerance. LILRB4 primarily mediates suppressive immune responses by transmitting inhibitory signals through immunoreceptor tyrosine-based inhibitory motifs (ITIMs). This immune checkpoint molecule has gained considerable attention due to its potent regulatory functions. Its ability to induce effector T cell dysfunction and promote T suppressor cell differentiation has been demonstrated, indicating the therapeutic potential of LILRB4 for modulating excessive immune responses, particularly in autoimmune diseases or the induction of transplant tolerance. Additionally, through intervening with LILRB4 molecules, immune system responsiveness can be adjusted, representing significant value in areas such as cancer treatment. Thus, LILRB4 has emerged as a key player in addressing autoimmune diseases, transplant tolerance induction, and other medical issues. In this review, we provide a comprehensive overview of LILRB4, encompassing its structure, expression, and ligand molecules as well as its role as a tolerance receptor. By exploring the involvement of LILRB4 in various diseases, its significance in disease progression is emphasized. Furthermore, we propose that the manipulation of LILRB4 represents a promising immunotherapeutic strategy and highlight its potential in disease prevention, treatment and diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (Z.X.); (X.Y.); (L.W.); (M.P.); (Q.Z.); (X.L.); (J.G.); (J.Z.); (X.L.)
| |
Collapse
|
2
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Zhang M, Yang J, Zhang J, Huang C, Liu H, Zhang P, Zhai Y, Liu L, Yang J. Research progress of B subfamily of leucocyte immunoglobulin-like receptors in inflammation. Int J Immunogenet 2023; 50:107-116. [PMID: 37038910 DOI: 10.1111/iji.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Leucocyte immunoglobulin-like receptors subfamily B (LILRB) belongs to the type I transmembrane glycoproteins, which is the immunosuppressive receptor. LILRBs are widely expressed in bone marrow cells, hematopoietic stem cells, nerve cells and other body cells. Studies have found that LILRBs receptor can bind to a variety of ligands and has a variety of biological functions such as regulating inflammatory response, immune tolerance and cell differentiation. Inflammatory reaction plays a vital role in resisting microorganisms. The function of inhibitory immune receptors can recognize the signs of infection and promote the function of anti-microbial effect. The inflammatory response must be strictly regulated to prevent excessive inflammation and tissue damage. Therefore, it is of general interest to understand the role of LILRBs in the inflammatory response. Because they can inhibit the anti-microbial response of neutrophils, some human pathogens use these receptors to escape immunity. This article reviews the biological role of LILRBs in the inflammatory response. We focus on the known ligands of LILRBs, their different roles after binding with ligands, and how these receptors help to form neutrophil responses during infection. Recent studies have shown that LILRBs recruit phosphatases through intracellular tyrosine-based immunoreceptor inhibitory motifs to negatively regulate immune activation, thereby transmitting inflammation-related signals, suggesting that LILRBs may be an ideal target for the treatment of inflammatory diseases. Here, we describe in detail the regulation of LILRBs on the inflammatory response, its signal transduction mode in inflammation, and the progress in the treatment of inflammatory diseases, providing a reference for further research.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Peiyue Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Li Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| |
Collapse
|
4
|
Xu Z, Chang CC, Li M, Zhang QY, Vasilescu ERM, D’Agati V, Floratos A, Vlad G, Suciu-Foca N. ILT3.Fc–CD166 Interaction Induces Inactivation of p70 S6 Kinase and Inhibits Tumor Cell Growth. THE JOURNAL OF IMMUNOLOGY 2017; 200:1207-1219. [DOI: 10.4049/jimmunol.1700553] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023]
|
5
|
Pinto S, Cunha C, Barbosa M, Vaz AR, Brites D. Exosomes from NSC-34 Cells Transfected with hSOD1-G93A Are Enriched in miR-124 and Drive Alterations in Microglia Phenotype. Front Neurosci 2017; 11:273. [PMID: 28567000 PMCID: PMC5434170 DOI: 10.3389/fnins.2017.00273] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder affecting motor neurons (MNs). Evidences indicate that ALS is a non-cell autonomous disease in which glial cells participate in both disease onset and progression. Exosomal transfer of mutant copper-zinc superoxide dismutase 1 (mSOD1) from cell-to-cell was suggested to contribute to disease dissemination. Data from our group and others showed that exosomes from activated cells contain inflammatory-related microRNAs (inflamma-miRNAs) that recapitulate the donor cell. While glia-derived exosomes and their effects in neurons have been addressed by several studies, only a few investigated the influence of motor neuron (MN)-derived exosomes in other cell function, the aim of the present study. We assessed a set of inflamma-miRs in NSC-34 MN-like cells transfected with mutant SOD1(G93A) and extended the study into their derived exosomes (mSOD1 exosomes). Then, the effects produced by mSOD1 exosomes in the activation and polarization of the recipient N9 microglial cells were investigated. Exosomes in coculture with N9 microglia and NSC-34 cells [either transfected with either wild-type (wt) human SOD1 or mutant SOD1(G93A)] showed to be transferred into N9 cells. Increased miR-124 expression was found in mSOD1 NSC-34 cells and in their derived exosomes. Incubation of mSOD1 exosomes with N9 cells determined a sustained 50% reduction in the cell phagocytic ability. It also caused a persistent NF-kB activation and an acute generation of NO, MMP-2, and MMP-9 activation, as well as upregulation of IL-1β, TNF-α, MHC-II, and iNOS gene expression, suggestive of induced M1 polarization. Marked elevation of IL-10, Arginase 1, TREM2, RAGE, and TLR4 mRNA levels, together with increased miR-124, miR-146a, and miR-155, at 24 h incubation, suggest the switch to mixed M1 and M2 subpopulations in the exosome-treated N9 microglial cells. Exosomes from mSOD1 NSC-34 MNs also enhanced the number of senescent-like positive N9 cells. Data suggest that miR-124 is translocated from the mSOD1 MNs to exosomes, which determine early and late phenotypic alterations in the recipient N9-microglial cells. In conclusion, modulation of the inflammatory-associated miR-124, in mSOD1 NSC-34 MNs, with potential benefits in the cargo of their exosomes may reveal a promising therapeutic strategy in halting microglia activation and associated effects in MN degeneration.
Collapse
Affiliation(s)
- Sara Pinto
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Carolina Cunha
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Marta Barbosa
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Ana R Vaz
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
6
|
Xu Z, Ho S, Chang CC, Zhang QY, Vasilescu ER, Vlad G, Suciu-Foca N. Molecular and Cellular Characterization of Human CD8 T Suppressor Cells. Front Immunol 2016; 7:549. [PMID: 27965674 PMCID: PMC5127796 DOI: 10.3389/fimmu.2016.00549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022] Open
Abstract
Bidirectional interactions between dendritic cells and Ag-experienced T cells initiate either a tolerogenic or immunogenic pathway. The outcome of these interactions is of crucial importance in malignancy, transplantation, and autoimmune diseases. Blockade of costimulation results in the induction of T helper cell anergy and subsequent differentiation of antigen-specific CD8+ T suppressor/regulatory cells (Ts). Ts, primed in the presence of inhibitory signals, exert their inhibitory function in an antigen-specific manner, a feature with tremendous clinical potential. In transplantation or autoimmunity, antigen-specific Ts can enforce tolerance to auto- or allo-antigens, while otherwise leaving the immune response to pathogens uninhibited. Alternatively, blockade of inhibitory receptors results in the generation of cytolytic CD8+ T cells, which is vital toward defense against tumors and viral diseases. Because CD8+ T cells are MHC Class I restricted, they are able to recognize HLA-bound antigenic peptides presented not only by APC but also on parenchymal cells, thus eliciting or suppressing auto- or allo-immune reactions.
Collapse
Affiliation(s)
- Zheng Xu
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Sophey Ho
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Chih-Chao Chang
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Qing-Yin Zhang
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Elena-Rodica Vasilescu
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - George Vlad
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Nicole Suciu-Foca
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| |
Collapse
|