1
|
Sanftenberg L, Keppeler S, Heithorst N, Dreischulte T, Roos M, Sckopke P, Bühner M, Gensichen J. Psychological Determinants of Vaccination Readiness against COVID-19 and Seasonal Influenza of the Chronically Ill in Primary Care in Germany-A Cross-Sectional Survey. Vaccines (Basel) 2023; 11:1795. [PMID: 38140199 PMCID: PMC10747451 DOI: 10.3390/vaccines11121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines against COVID-19 and influenza are highly recommended for the chronically ill. They often suffer from co-morbid mental health issues. This cross-sectional observational study analyzes the associations between depression (PHQ-9) and anxiety (OASIS) with vaccination readiness (5C) against COVID-19 and influenza in chronically ill adults in primary care in Germany. Sociodemographic data, social activity (LSNS), patient activation measure (PAM), and the doctor/patient relationship (PRA) are examined as well. Descriptive statistics and linear mixed-effects regression models are calculated. We compare data from n = 795 study participants. The symptoms of depression are negatively associated with confidence in COVID-19 vaccines (p = 0.010) and positively associated with constraints to get vaccinated against COVID-19 (p = 0.041). There are no significant associations between symptoms of depression and vaccination readiness against influenza. Self-reported symptoms of a generalized anxiety disorder seem not to be associated with vaccination readiness. To address confidence in COVID-19 vaccines among the chronically ill, targeted educational interventions should be elaborated to consider mental health issues like depression. As general practitioners play a key role in the development of a good doctor/patient relationship, they should be trained in patient-centered communication. Furthermore, a standardized implementation of digital vaccination management systems might improve immunization rates in primary care.
Collapse
Affiliation(s)
- Linda Sanftenberg
- Institute of General Practice and Family Medicine, University Hospital, LMU Munich, 80336 Munich, Germany; (S.K.); (N.H.); (T.D.); (J.G.)
| | - Simon Keppeler
- Institute of General Practice and Family Medicine, University Hospital, LMU Munich, 80336 Munich, Germany; (S.K.); (N.H.); (T.D.); (J.G.)
| | - Nadine Heithorst
- Institute of General Practice and Family Medicine, University Hospital, LMU Munich, 80336 Munich, Germany; (S.K.); (N.H.); (T.D.); (J.G.)
| | - Tobias Dreischulte
- Institute of General Practice and Family Medicine, University Hospital, LMU Munich, 80336 Munich, Germany; (S.K.); (N.H.); (T.D.); (J.G.)
| | - Marco Roos
- General Practice, Medical Faculty, University of Augsburg, 86356 Neusäß, Germany;
| | - Philipp Sckopke
- Department of Psychology, LMU Munich, 80802 Munich, Germany; (P.S.); (M.B.)
| | - Markus Bühner
- Department of Psychology, LMU Munich, 80802 Munich, Germany; (P.S.); (M.B.)
| | - Jochen Gensichen
- Institute of General Practice and Family Medicine, University Hospital, LMU Munich, 80336 Munich, Germany; (S.K.); (N.H.); (T.D.); (J.G.)
| |
Collapse
|
2
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
3
|
Alesci A, Di Paola D, Fumia A, Marino S, D’Iglio C, Famulari S, Albano M, Spanò N, Lauriano ER. Internal Defense System of Mytilus galloprovincialis (Lamarck, 1819): Ecological Role of Hemocytes as Biomarkers for Thiacloprid and Benzo[a]Pyrene Pollution. TOXICS 2023; 11:731. [PMID: 37755742 PMCID: PMC10537264 DOI: 10.3390/toxics11090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
The introduction of pollutants, such as thiacloprid and benzo[a]pyrene (B[a]P), into the waters of urbanized coastal and estuarine areas through fossil fuel spills, domestic and industrial waste discharges, atmospheric inputs, and continental runoff poses a major threat to the fauna and flora of the aquatic environment and can have a significant impact on the internal defense system of invertebrates such as mussels. Using monoclonal and polyclonal anti-Toll-like receptor 2 (TLR2) and anti-inducible nitric oxide synthetase (iNOS) antibodies for the first time, this work aims to examine hemocytes in the mantle and gills of M. galloprovincialis as biomarkers of thiacloprid and B[a]P pollution and analyze their potential synergistic effect. To pursue this objective, samples were exposed to the pollutants, both individually and simultaneously. Subsequently, oxidative stress biomarkers were evaluated by enzymatic analysis, while tissue changes and the number of hemocytes in the different contaminated groups were assessed via histomorphological and immunohistochemical analyses. Our findings revealed that in comparison to a single exposure, the two pollutants together significantly elevated oxidative stress. Moreover, our data may potentially enhance knowledge on how TLR2 and iNOS work as part of the internal defense system of bivalves. This would help in creating new technologies and strategies, such as biosensors, that are more suitable for managing water pollution, and garnering new details on the condition of the marine ecosystem.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, 98124 Messina, Italy;
| | - Sebastian Marino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Claudio D’Iglio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Sergio Famulari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Marco Albano
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Nunziacarla Spanò
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| |
Collapse
|
4
|
Kuśnierczyk P. Anti-SARS-CoV-2 mRNA vaccines, their efficiency, side effects and controversies. Scand J Immunol 2023; 98:e13310. [PMID: 38441312 DOI: 10.1111/sji.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 03/07/2024]
Affiliation(s)
- Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Alesci A, Fumia A, Albano M, Messina E, D'Angelo R, Mangano A, Miller A, Spanò N, Savoca S, Capillo G. Investigating the internal system of defense of Gastropoda Aplysia depilans (Gmelin, 1791): Focus on hemocytes. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108791. [PMID: 37146849 DOI: 10.1016/j.fsi.2023.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
The internal defense system of mollusks represents an efficient protection against pathogens and parasites, involving several biological immune processes, such as phagocytosis, encapsulation, cytotoxicity, and antigenic recognition of self/non-self. Mollusks possess professional, migratory, and circulating cells that play a key role in the defense of the organism, the hemocytes. Several studies have been performed on hemocytes from different mollusks, but, to date, these cells are still scarcely explored. Different hemocyte populations have been found, according to the presence or absence of granules, size, and the species of mollusks studied. Our study aims to deepen the knowledge of the hemocytes of the gastropod Aplysia depilans using morphological techniques and light and confocal microscopy, testing Toll-like receptor 2, inducible nitric oxide synthetase, and nicotinic acetylcholine receptor alpha 7 subunit. Our results show two hemocyte populations distinguishable by size, and presence/absence of granules in the cytoplasm, strongly positive for the antibodies tested, suggesting for the first time the presence of these receptors on the surface of sea hare hemocytes by immunohistochemistry. These data help in the understanding of the immune system of this gastropod, providing additional data for comprehending the evolution of the defense response in metazoan phylogenesis.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124, Messina, Italy.
| | - Marco Albano
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy.
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Roberta D'Angelo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Angelica Mangano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy.
| | - Nunziacarla Spanò
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125, Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100, Messina, Italy.
| | - Serena Savoca
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125, Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100, Messina, Italy.
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100, Messina, Italy.
| |
Collapse
|
6
|
Pergolizzi S, Fumia A, D'Angelo R, Mangano A, Lombardo GP, Giliberti A, Messina E, Alesci A, Lauriano ER. Expression and function of toll-like receptor 2 in vertebrate. Acta Histochem 2023; 125:152028. [PMID: 37075649 DOI: 10.1016/j.acthis.2023.152028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Toll-like receptors (TLRs) are essential for identifying and detecting pathogen-associated molecular patterns (PAMPs) produced by a variety of pathogens, including viruses and bacteria. Since TLR2 is the only TLR capable of creating functional heterodimers with more than two other TLR types, it is very important for vertebrate immunity. TLR2 not only broadens the variety of PAMPs that it can recognize but has also the potential to diversify the subsequent signaling cascades. TLR2 is ubiquitous, which is consistent with the wide variety of tasks and functions it serves. Immune cells, endothelial cells, and epithelial cells have all been found to express TLR2. This review aims to gather currently available information about the preservation of this intriguing immunological molecule in the phylum of vertebrates.
Collapse
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124 Messina, Italy
| | - Roberta D'Angelo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelica Mangano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Angelo Giliberti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
7
|
Alesci A, Capillo G, Fumia A, Albano M, Messina E, Spanò N, Pergolizzi S, Lauriano ER. Coelomocytes of the Oligochaeta earthworm Lumbricus terrestris (Linnaeus, 1758) as evolutionary key of defense: a morphological study. ZOOLOGICAL LETTERS 2023; 9:5. [PMID: 36871038 PMCID: PMC9985225 DOI: 10.1186/s40851-023-00203-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Metazoans have several mechanisms of internal defense for their survival. The internal defense system evolved alongside the organisms. Annelidae have circulating coelomocytes that perform functions comparable to the phagocytic immune cells of vertebrates. Several studies have shown that these cells are involved in phagocytosis, opsonization, and pathogen recognition processes. Like vertebrate macrophages, these circulating cells that permeate organs from the coelomic cavity capture or encapsulate pathogens, reactive oxygen species (ROS), and nitric oxide (NO). Furthermore, they produce a range of bioactive proteins involved in immune response and perform detoxification functions through their lysosomal system. Coelomocytes can also participate in lithic reactions against target cells and the release of antimicrobial peptides. Our study immunohistochemically identify coelomocytes of Lumbricus terrestris scattered in the epidermal and the connective layer below, both in the longitudinal and in the smooth muscle layer, immunoreactive for TLR2, CD14 and α-Tubulin for the first time. TLR2 and CD14 are not fully colocalized with each other, suggesting that these coelomocytes may belong to two distinct families. The expression of these immune molecules on Annelidae coelomocytes confirms their crucial role in the internal defense system of these Oligochaeta protostomes, suggesting a phylogenetic conservation of these receptors. These data could provide further insights into the understanding of the internal defense system of the Annelida and of the complex mechanisms of the immune system in vertebrates.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164, Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98124, Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Nunziacarla Spanò
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164, Messina, Italy
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125, Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| |
Collapse
|
8
|
Matsuzaka Y, Yashiro R. Extracellular Vesicle-Based SARS-CoV-2 Vaccine. Vaccines (Basel) 2023; 11:vaccines11030539. [PMID: 36992123 DOI: 10.3390/vaccines11030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Messenger ribonucleic acid (RNA) vaccines are mainly used as SARS-CoV-2 vaccines. Despite several issues concerning storage, stability, effective period, and side effects, viral vector vaccines are widely used for the prevention and treatment of various diseases. Recently, viral vector-encapsulated extracellular vesicles (EVs) have been suggested as useful tools, owing to their safety and ability to escape from neutral antibodies. Herein, we summarize the possible cellular mechanisms underlying EV-based SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, The Institute of Medical Science, Center for Gene and Cell Therapy, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| |
Collapse
|