1
|
Yang H, Liao Z, Zou H, Li K, Zhou Y, Gao Z, Mao Y, Song C. Machine learning-based gait adaptation dysfunction identification using CMill-based gait data. Front Neurorobot 2024; 18:1421401. [PMID: 39136036 PMCID: PMC11317473 DOI: 10.3389/fnbot.2024.1421401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Combining machine learning (ML) with gait analysis is widely applicable for diagnosing abnormal gait patterns. Objective To analyze gait adaptability characteristics in stroke patients, develop ML models to identify individuals with GAD, and select optimal diagnostic models and key classification features. Methods This study was investigated with 30 stroke patients (mean age 42.69 years, 60% male) and 50 healthy adults (mean age 41.34 years, 58% male). Gait adaptability was assessed using a CMill treadmill on gait adaptation tasks: target stepping, slalom walking, obstacle avoidance, and speed adaptation. The preliminary analysis of variables in both groups was conducted using t-tests and Pearson correlation. Features were extracted from demographics, gait kinematics, and gait adaptability datasets. ML models based on Support Vector Machine, Decision Tree, Multi-layer Perceptron, K-Nearest Neighbors, and AdaCost algorithm were trained to classify individuals with and without GAD. Model performance was evaluated using accuracy (ACC), sensitivity (SEN), F1-score and the area under the receiver operating characteristic (ROC) curve (AUC). Results The stroke group showed a significantly decreased gait speed (p = 0.000) and step length (SL) (p = 0.000), while the asymmetry of SL (p = 0.000) and ST (p = 0.000) was higher compared to the healthy group. The gait adaptation tasks significantly decreased in slalom walking (p = 0.000), obstacle avoidance (p = 0.000), and speed adaptation (p = 0.000). Gait speed (p = 0.000) and obstacle avoidance (p = 0.000) were significantly correlated with global F-A score in stroke patients. The AdaCost demonstrated better classification performance with an ACC of 0.85, SEN of 0.80, F1-score of 0.77, and ROC-AUC of 0.75. Obstacle avoidance and gait speed were identified as critical features in this model. Conclusion Stroke patients walk slower with shorter SL and more asymmetry of SL and ST. Their gait adaptability was decreased, particularly in obstacle avoidance and speed adaptation. The faster gait speed and better obstacle avoidance were correlated with better functional mobility. The AdaCost identifies individuals with GAD and facilitates clinical decision-making. This advances the future development of user-friendly interfaces and computer-aided diagnosis systems.
Collapse
Affiliation(s)
- Hang Yang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhenyi Liao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Hailei Zou
- College of Science, China Jiliang University, Zhejiang, China
| | - Kuncheng Li
- MeritData Technology Co., Ltd., Shanxi, China
| | - Ye Zhou
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhenzhen Gao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Yajun Mao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Caiping Song
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
2
|
Yang H, Gao Z, Zhou Y, Liao Z, Song C, Mao Y. Effects of gait adaptation training on augmented reality treadmill for patients with stroke in community ambulation. Int J Qual Health Care 2024; 36:mzae008. [PMID: 38334696 DOI: 10.1093/intqhc/mzae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024] Open
Abstract
Gait adaptability is essential for stroke survivors to achieve efficient and safe community ambulation. However, conventional treadmill rehabilitation is only a repetitive practice of leg movement. This study compared the effects of augmented reality treadmill-based gait adaptation training with regular treadmill programs for patients with stroke. Forty patients with stroke (n = 40) were randomly assigned to the gait adaptation training {n = 20, age: 49.85 [standard deviation (SD) 8.44] years; onset of stroke: 107.80 (SD 48.31) days} and regular training [n = 20, age: 50.75 (SD 8.05) years, onset of stroke: 111.60 (SD 49.62) days] groups. Both groups completed three sessions of training per week for 5 weeks (15 sessions). The primary outcomes were the 10-m walk test and success rate of obstacle avoidance, while secondary outcomes included the Berg balance scale, component timed-up-and-go, and fall rate in a 6-month follow-up period. Assessments were performed before and after the intervention. The paired t-test was applied to compare the differences within groups and independent sample t-test was performed to compare the differences between groups. The 10-m walk test, success rate of obstacle avoidance, Berg balance scale, and component timed-up-and-go all significantly improved in the both groups (P < .001). The success rate of obstacle avoidance [P = .02, 95% confidence interval (CI): -21.07, -1.64], Berg Balance Scale (P = .02, 95% CI: -8.03, -0.67), 'turning around time' (P = .04, 95% CI: 0.08, 2.81), 'stand-to-sit' (P = .03, 95% CI: 0.16, 2.41) and 'total time' (P = .048, 95% CI: 0.04, 10.32) improved significantly in gait adaptation training group after intervention, while the 10-m walk test (P = .09, 95% CI: -0.17, 0.01), timed 'sit-to-stand' (P = .09, 95% CI: -0.14, 2.04), and 'linear walking' (P = .09, 95% CI: -0.27, 3.25) in gait adaptation training group did not show statistical difference compared to the regular training group. Total fall rate during the follow-up period was statistically decreased in the gait adaptation training group (P = .045). Both interventions improved mobility outcomes, with augmented reality treadmill-based gait adaptation indicating greater improvement in obstacle avoidance, balance, turning, and stand-to-sit. Augmented reality treadmill-based gait adaptation training emerges as an effective and promising intervention for patients with stroke in early rehabilitation.
Collapse
Affiliation(s)
- Hang Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang 310001, China
| | - Zhenzhen Gao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang 310001, China
| | - Ye Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang 310001, China
| | - Zhenyi Liao
- Center of Physiotherapy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang 310001, China
| | - Caiping Song
- Center of Physiotherapy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang 310001, China
| | - Yajun Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang 310001, China
| |
Collapse
|
3
|
Muroi D, Saito Y, Koyake A, Hiroi Y, Higuchi T. Training for walking through an opening improves collision avoidance behavior in subacute patients with stroke: a randomized controlled trial. Disabil Rehabil 2023:1-9. [PMID: 36815267 DOI: 10.1080/09638288.2023.2181412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE Paretic side collisions frequently occur in stroke patients, especially while walking through narrow spaces. We determined whether training for walking through an opening (T-WTO) while entering from the paretic side would improve collision avoidance behavior and prevent falls after 6 months. MATERIALS AND METHODS Thirty-eight adults with moderate-to-mild hemiparetic gait after stroke who were hospitalized in a rehabilitation setting were randomly allocated to the T-WTO (n = 20) or regular rehabilitation (R-Control; n = 18) program. Both groups received five sessions of 40 min per week, for three weeks total. T-WTO included walking through openings of various widths while rotating with the paretic side in front, and R-Control involved normal walking without body rotation. Obstacle avoidance ability, 10-m walking test, timed Up and Go test, Berg Balance Scale, Activities-specific Balance Confidence, the perceptual judgment of passability, and fall incidence were assessed. RESULTS Collision rate and time to passage of the opening in obstacle avoidance task significantly improved in the T-WTO group compared with those in the R-Control group. Contrast, T-WTO did not lead to significant improvements in other outcomes. CONCLUSIONS T-WTO improved efficiency and safety in managing subacute stroke patients. Such training could improve patient outcomes/safety because of the paretic body side during walking. CLINICAL TRIAL REGISTRATION NO. R000038375 UMIN000033926.
Collapse
Affiliation(s)
- Daisuke Muroi
- Division of Physical Therapy, Department of Rehabilitation Sciences, Faculty of Health Care Sciences, Chiba Prefectural University of Health Sciences, Chiba, Japan
- Department of Health Promotion Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Yutaro Saito
- Department of Rehabilitation, Kameda Medical Center, Chiba, Japan
| | - Aki Koyake
- Department of Rehabilitation, Kameda Medical Center, Chiba, Japan
| | - Yasuhiro Hiroi
- Department of Rehabilitation, Sarashina Rehabilitation Hospital, Chiba, Japan
| | - Takahiro Higuchi
- Department of Health Promotion Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
4
|
Delbes L, Mascret N, Goulon C, Montagne G. Validation of an immersive virtual reality device accepted by seniors that preserves the adaptive behavior produced in the real world. Front Bioeng Biotechnol 2022; 10:917486. [PMID: 36118569 PMCID: PMC9479106 DOI: 10.3389/fbioe.2022.917486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Falls in the elderly are a major societal issue. Virtual reality appears as a relevant tool to propose gait training programs to prevent the occurrence of falls. The use of a head-mounted display allows overground walking during fully immersive virtual training sessions. Our long-term ambition is to develop gait training programs with a head-mounted display to propose enjoyable and personalized training content for the elderly. Before proposing these programs, several methodological precautions must be taken. The first concerns the supposed similarity of the adaptive behavior produced in the real world and in virtual reality. The second concerns the acceptance of the virtual reality device before and after use. Twenty older adults performed a locomotor pointing task in three conditions including a real-world condition, a virtual-world condition consisting in a replica of the real-world condition, and a virtual condition in which the locomotor pointing task was performed in a different context. From feet positions in relation to the position of a target, gait adaptability behavior was investigated. In line with previous studies, step adjustments (needed and produced) were investigated through a combination of inter-trial and trial-by-trial analyses. The results highlighted that participants adopted the same gait adaptability behavior whatever the type of environment (real vs. virtual). Gait analyses suggested the use of a generic control mechanism based on information-movement coupling. We also demonstrated that older adults accepted the virtual reality device before and after use. With these methodological locks removed, it is now possible to design training programs in virtual reality to prevent falls in the elderly.
Collapse
|
5
|
Retraining walking adaptability following incomplete spinal cord injury. Spinal Cord Ser Cases 2018; 3:17091. [PMID: 29449967 PMCID: PMC5803746 DOI: 10.1038/s41394-017-0003-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023] Open
Abstract
Introduction Functional walking requires the ability to modify one’s gait pattern to environmental demands and task goals—gait adaptability. Following incomplete spinal cord injury (ISCI), gait rehabilitation such as locomotor training (Basic-LT) emphasizes intense, repetitive stepping practice. Rehabilitation approaches focusing on practice of gait adaptability tasks have not been established for individuals with ISCIs but may promote recovery of higher level walking skills. The primary purpose of this case series was to describe and determine the feasibility of administering a gait adaptability retraining approach—Adapt-LT—by comparing the dose and intensity of Adapt-LT to Basic-LT. Case presentation Three individuals with ISCIs (>1 year, AIS C or D) completed three weeks each (15 sessions) of Basic-LT and Adapt-LT. Interventions included practice on a treadmill with body weight support and practice overground (≥30 mins total). Adapt-LT focused on speed changes, obstacle negotiation, and backward walking. Training parameters (step counts, speeds, perceived exertion) were compared and outcomes assessed pre and post interventions. Based on completion of the protocol and similarities in training parameters in the two interventions, it was feasible to administer Adapt-LT with a similar dosage and intensity as Basic-LT. Additionally, the participants demonstrated gains in walking function and balance following each training type. Discussion Rehabilitation that includes stepping practice with adaptability tasks is feasible for individuals with ISCIs. Further investigation is needed to determine the efficacy of Adapt-LT.
Collapse
|
6
|
Online adjustments of leg movements in healthy young and old. Exp Brain Res 2017; 235:2329-2348. [DOI: 10.1007/s00221-017-4967-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/24/2017] [Indexed: 12/22/2022]
|
7
|
Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-analysis. Sports Med 2016; 45:1721-38. [PMID: 26325622 PMCID: PMC4656699 DOI: 10.1007/s40279-015-0375-y] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The effects of balance training (BT) in older adults on proxies of postural control and mobility are well documented in the literature. However, evidence-based dose–response relationships in BT modalities (i.e., training period, training frequency, training volume) have not yet been established in healthy older adults. Objectives The objectives of this systematic literature review and meta-analysis are to quantify BT intervention effects and to additionally characterize dose–response relationships of BT modalities (e.g., training period, training frequency) through the analysis of randomized controlled trials (RCTs) that could maximize improvements in balance performance in healthy community-dwelling older adults. Data Sources A computerized systematic literature search was performed in the electronic databases PubMed and Web of Science from January 1985 up to January 2015 to capture all articles related to BT in healthy old community-dwelling adults. Study Eligibility Criteria A systematic approach was used to evaluate the 345 articles identified for initial review. Only RCTs were included if they investigated BT in healthy community-dwelling adults aged ≥65 years and tested at least one behavioral balance performance outcome (e.g., center of pressure displacements during single-leg stance). In total, 23 studies met the inclusionary criteria for review. Study Appraisal and Synthesis Methods Weighted mean standardized mean differences between subjects (SMDbs) of the intervention-induced adaptations in balance performance were calculated using a random-effects model and tested for an overall intervention effect relative to passive controls. The included studies were coded for the following criteria: training modalities (i.e., training period, training frequency, training volume) and balance outcomes [static/dynamic steady-state (i.e., maintaining a steady position during standing and walking), proactive balance (i.e., anticipation of a predicted perturbation), reactive balance (i.e., compensation of an unpredicted perturbation) as well as balance test batteries (i.e., combined testing of different balance components as for example the Berg Balance Scale)]. Heterogeneity between studies was assessed using I2 and Chi2-statistics. The methodological quality of each study was tested by means of the Physiotherapy Evidence Database (PEDro) Scale. Results Weighted mean SMDbs showed that BT is an effective means to improve static steady-state (mean SMDbs = 0.51), dynamic steady-state (mean SMDbs = 0.44), proactive (mean SMDbs = 1.73), and reactive balance (mean SMDbs = 1.01) as well as the performance in balance test batteries (mean SMDbs = 1.52) in healthy older adults. Our analyses regarding dose–response relationships in BT revealed that a training period of 11–12 weeks (mean SMDbs= 1.26), a frequency of three training sessions per week (mean SMDbs= 1.20), a total number of 36–40 training sessions (mean SMDbs = 1.39), a duration of a single training session of 31–45 min (mean SMDbs = 1.19), and a total duration of 91–120 min of BT per week (mean SMDbs = 1.93) of the applied training modalities is most effective in improving overall balance performance. However, it has to be noted that effect sizes for the respective training modalities were computed independently (i.e., modality specific). Because of the small number of studies that reported detailed information on training volume (i.e., number of exercises per training session, number of sets and/or repetitions per exercise, duration of single-balance exercises) dose–response relationships were not computed for these parameters. Limitations The present findings have to be interpreted with caution because we indirectly compared dose–response relationships across studies using SMDbs and not in a single controlled study as it is difficult to separate the impact of a single training modality (e.g., training frequency) from that of the others. Moreover, the quality of the included studies was rather limited with a mean PEDro score of 5 and the heterogeneity between studies was considerable (i.e., I2 = 76–92 %). Conclusions Our detailed analyses revealed that BT is an effective means to improve proxies of static/dynamic steady-state, proactive, and reactive balance as well as performance in balance test batteries in healthy older adults. Furthermore, we were able to establish effective BT modalities to improve balance performance in healthy older adults. Thus, practitioners and therapists are advised to consult the identified dose–response relationships of this systematic literature review and meta-analysis. However, further research of high methodologic quality is needed to determine (1) dose–response relationships of BT in terms of detailed information on training volume (e.g., number of exercises per training session) and (2) a feasible and effective method to regulate training intensity in BT.
Collapse
|
8
|
Guadagnin EC, da Rocha ES, Duysens J, Carpes FP. Does physical exercise improve obstacle negotiation in the elderly? A systematic review. Arch Gerontol Geriatr 2016; 64:138-45. [DOI: 10.1016/j.archger.2016.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 11/26/2022]
|
9
|
Corporaal SHA, Swinnen SP, Duysens J, Bruijn SM. Slow maturation of planning in obstacle avoidance in humans. J Neurophysiol 2015; 115:404-12. [PMID: 26561604 DOI: 10.1152/jn.00701.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022] Open
Abstract
Complex gait (e.g., obstacle avoidance) requires a higher cognitive load than simple steady-state gait, which is a more automated movement. The higher levels of the central nervous system, responsible for adjusting motor plans to complex gait, develop throughout childhood into adulthood. Therefore, we hypothesize that gait strategies in complex gait are likely to mature until adulthood as well. However, little is known about the maturation of complex gait from childhood into adolescence and adulthood. To address this issue, we investigated obstacle avoidance in forty-four 8- to 18-yr-old participants who walked at preferred speed along a 6-m walkway on which a planar obstacle (150% of step length, 1 m wide) was projected. Participants avoided the obstacle by stepping over this projection, while lower body kinematics were recorded. Results showed that step length and speed adjustments during successful obstacle avoidance were similar across all ages, even though younger children modified step width to a greater extent. Additionally, the younger children used larger maximal toe elevations and take-off distances than older children. Moreover, during unsuccessful trials, younger children deployed exaggerated take-off distances, which resulted in obstacle contact upon the consecutive heel strike. These results indicate that obstacle avoidance is not fully matured in younger children, and that the inability to plan precise foot placements is an important factor contributing to failures in obstacle avoidance.
Collapse
Affiliation(s)
- Sharissa H A Corporaal
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium;
| | - Jacques Duysens
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium; Biomechatronics Laboratory, Mechatronics Department, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
| | - Sjoerd M Bruijn
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium; MOVE Research Institute Amsterdam, Department of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands; and Department of Orthopedic Surgery, First Affiliated Hospital, Fujian Medical University, Fujian, People's Republic of China
| |
Collapse
|
10
|
Guadagnin EC, da Rocha ES, Mota CB, Carpes FP. Effects of regular exercise and dual tasking on spatial and temporal parameters of obstacle negotiation in elderly women. Gait Posture 2015; 42:251-6. [PMID: 26169337 DOI: 10.1016/j.gaitpost.2015.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 02/02/2023]
Abstract
This study investigated the effects of regular exercise and dual tasking on bilateral spatial and temporal parameters of obstacle negotiation in elderly women. Sedentary (n=12) and physically active (n=12) elderly women volunteered to participate in this study. Gait kinematics were recorded during obstacle crossing when performing a dual task and when not performing a dual task. Physically active participants crossed obstacles more safely, in terms of clearance or distance to or over the obstacle, both with and without dual tasking, and usually for both lead and trail legs. Performing the dual task increased toe distance, and decreased heel distance and gait speed in the active participants, and increased toe clearance and heel distance, and decreased gait speed in the sedentary participants. Differences between preferred and non-preferred leg were accentuated for toe clearance in the lead limb. These results suggest that specialized exercises may not be needed for improvement in obstacle avoidance skills in the elderly, and participation in multi-activities, including aerobic exercises, may be sufficient.
Collapse
Affiliation(s)
- E C Guadagnin
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil; Exercise Research Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E S da Rocha
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil; Laboratory of Biomechanics, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - C B Mota
- Laboratory of Biomechanics, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - F P Carpes
- Applied Neuromechanics Research Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil; Laboratory of Biomechanics, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Ko DS, Jung DI, Jeong MA. Analysis of Core Stability Exercise Effect on the Physical and Psychological Function of Elderly Women Vulnerable to Falls during Obstacle Negotiation. J Phys Ther Sci 2014; 26:1697-700. [PMID: 25435680 PMCID: PMC4242935 DOI: 10.1589/jpts.26.1697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/06/2014] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of the present study was to investigate the effects of core stability exercise (CSE) on the physical and psychological functions of elderly women while negotiating general obstacles. [Subjects and Methods] After allocating 10 elderly women each to the core stability training group and the control group, we carried out Performance-Oriented Mobility Assessment (POMA) and measured crossing velocity (CV), maximum vertical heel clearance (MVHC), and knee flexion angle for assessing physical performances. We evaluated depression and fear of falling for assessing psychological functions. [Results] Relative to the control group, the core stability training group showed statistically significant overall changes after the training session: an increase in POMA scores, faster CV, lower MVHC, and a decrease in knee flexion angle. Furthermore, depression and fear of falling decreased significantly. [Conclusion] CSE can have a positive effect on the improvement of physical and psychological performances of older women who are vulnerable to falls as they negotiate everyday obstacles.
Collapse
Affiliation(s)
- Dae-Sik Ko
- Department of Occupational and Environmental Medicine, Chosun University, Republic of Korea
| | - Dae-In Jung
- Department of Physical Therapy, Gwangju Health University, Republic of Korea
| | - Mi-Ae Jeong
- Department of Dental Hygiene, College of Health and Science, Kangwon National University, Republic of Korea
| |
Collapse
|
12
|
Fujimoto A, Hori H, Tamura T, Hirai T, Umemura T, Iguchi F, Sawa S, Ogawa K, Sato K, Kusaka Y. Relationships between Estimation Errors and Falls in Healthy Aged Dwellers. Gerontology 2014; 61:109-15. [DOI: 10.1159/000363571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/13/2014] [Indexed: 11/19/2022] Open
|
13
|
Fonteyn EMR, Heeren A, Engels JJC, Boer JJD, van de Warrenburg BPC, Weerdesteyn V. Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration. Gait Posture 2014; 40:247-51. [PMID: 24786476 DOI: 10.1016/j.gaitpost.2014.04.190] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/22/2014] [Accepted: 04/13/2014] [Indexed: 02/02/2023]
Abstract
Balance and gait problems in patients with cerebellar degeneration lead to reduced mobility, loss of independence, and frequent falls. It is currently unclear, however, whether balance and gait capacities can be improved by training in this group of patients. Therefore, the aim of this study was to examine the effects of gait adaptability training on obstacle avoidance and dynamic stability during adaptive gait. Ten patients with degenerative cerebellar ataxia received 10 protocolized gait adaptability training sessions of 1 h each during 5 weeks. Training was performed on a treadmill with visual stepping targets and obstacles projected on the belt's surface. As the primary outcome, we used an obstacle avoidance task while walking on a treadmill. We determined avoidance success rates, as well as dynamic stability during the avoidance manoeuvre. Clinical ratings included the scale for the assessment of ataxia (SARA), 10 m walking test, timed up-and-go test, berg balance scale, and the obstacle subtask of the emory functional ambulation profile (EFAP). Following the intervention, success rates on the obstacle avoidance task had significantly improved compared to pre-intervention. For successful avoidance, participants allowed themselves smaller stability margins in the sagittal plane in the (shortened) pre-crossing step. However, in the subsequent steps they returned to baseline stability values more effectively than before training. SARA scores and the EFAP obstacle subtask improved significantly as well. This pilot study provides preliminary evidence of a beneficial effect of gait adaptability training on obstacle avoidance capacity and dynamic stability in patients with cerebellar degeneration.
Collapse
Affiliation(s)
- Ella M R Fonteyn
- Department of Neurology, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands; Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Anita Heeren
- Department of Rehabilitation, Radboud University Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands; Rehabilitation Centre Groot Klimmendaal, Arnhem, The Netherlands
| | - Jasper-Jan C Engels
- Department of Rehabilitation, Radboud University Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Jasper J Den Boer
- Department of Rehabilitation, Radboud University Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands.
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Radboud University Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands; Sint Maartenskliniek Research, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Said CM, Galea M, Lythgo N. Obstacle crossing following stroke improves over one month when the unaffected limb leads, but not when the affected limb leads. Gait Posture 2014; 39:213-7. [PMID: 23916414 DOI: 10.1016/j.gaitpost.2013.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/24/2013] [Accepted: 07/08/2013] [Indexed: 02/02/2023]
Abstract
While it is well established that obstacle crossing is impaired following stroke, it is not known whether obstacle crossing improves as gait improves following stroke. The purpose of this study was to determine whether obstacle crossing changed over a one month time period in people with a recent stroke. Twenty participants receiving rehabilitation following a recent stroke were tested on two occasions one month apart. Participants received usual care rehabilitation, including physiotherapy, between the tests. The main outcome measure was obstacle crossing speed as participants stepped over a 4-cm high obstacle. Secondary measures were spatiotemporal variables. Data were collected via a three dimensional motion analysis system. When leading with the affected limb no changes in obstacle crossing speed or spatiotemporal variables were observed over the one month period. When leading with the unaffected limb, crossing speed significantly increased (p=.002), and affected trail limb swing time (p=.03) and crossing step double support time reduced (p=.016). While not significant, the lead and trail limb pre-obstacle distance increased (p=.08), and lead swing time (p=.052) reduced. Change in obstacle crossing speed did not correlate with change in level gait speed. Obstacle crossing does not necessarily improve over a one month time period in people receiving rehabilitation following stroke. These findings suggest that there may be a need for more targeted training of obstacle crossing, particularly when leading with the affected limb.
Collapse
Affiliation(s)
- Catherine M Said
- Physiotherapy, Melbourne School of Health Sciences, University of Melbourne, Parkville, Victoria, Australia; Physiotherapy Department, Austin Health, Heidelberg West, Victoria, Australia.
| | | | | |
Collapse
|
15
|
Loverro KL, Mueske NM, Hamel KA. Location of minimum foot clearance on the shoe and with respect to the obstacle changes with locomotor task. J Biomech 2013; 46:1842-50. [PMID: 23747230 DOI: 10.1016/j.jbiomech.2013.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 04/29/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022]
Abstract
Minimum foot clearance (MFC) as it relates to trips and falls has been extensively studied across many locomotor tasks, but examination of this body of research yields several studies with conflicting results and a wide range of MFCs within tasks. While there are several factors that may affect the MFC variability across studies (populations studied, environmental conditions, etc.), one aspect of the discrepancies in the literature may be the result of different placements of shoe markers and/or MFC calculation methods. A marker on the toe is often used, but may only quantify one aspect of how the foot actually clears the trip hazard. The purpose of this study was to determine the location on the shoe where MFC occurs during locomotor tasks with the highest risk of tripping. Ten young adults performed three trials of locomotor tasks which included overground walking, obstacle crossing, level change and stair negotiation. Clearance was calculated for 72 points on each shoe, including those most commonly used in past research. The location of the overall MFC on the shoe sole differed both between limbs and across locomotor tasks. Additionally, the region of the obstacle, step or stair over which the MFC occurred varied both within and across task. Use of this 3D MFC methodology provided further insight into which portions of the shoe may come closest to the tripping hazard. Future research should examine whether the location and value of the MFC changes between different populations, or with environmental modifications.
Collapse
Affiliation(s)
- Kari L Loverro
- US Army Natick Soldier Research Development and Research Center Natick, MA, USA
| | | | | |
Collapse
|
16
|
Ali A, Sundaraj K, Ahmad B, Ahamed N, Islam A. Gait disorder rehabilitation using vision and non-vision based sensors: a systematic review. Bosn J Basic Med Sci 2013; 12:193-202. [PMID: 22938548 DOI: 10.17305/bjbms.2012.2484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Even though the amount of rehabilitation guidelines has never been greater, uncertainty continues to arise regarding the efficiency and effectiveness of the rehabilitation of gait disorders. This question has been hindered by the lack of information on accurate measurements of gait disorders. Thus, this article reviews the rehabilitation systems for gait disorder using vision and non-vision sensor technologies, as well as the combination of these. All papers published in the English language between 1990 and June, 2012 that had the phrases "gait disorder", "rehabilitation", "vision sensor", or "non vision sensor" in the title, abstract, or keywords were identified from the SpringerLink, ELSEVIER, PubMed, and IEEE databases. Some synonyms of these phrases and the logical words "and", "or", and "not" were also used in the article searching procedure. Out of the 91 published articles found, this review identified 84 articles that described the rehabilitation of gait disorders using different types of sensor technologies. This literature set presented strong evidence for the development of rehabilitation systems using a markerless vision-based sensor technology. We therefore believe that the information contained in this review paper will assist the progress of the development of rehabilitation systems for human gait disorders.
Collapse
Affiliation(s)
- Asraf Ali
- School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP), Malaysia.
| | | | | | | | | |
Collapse
|
17
|
Lee YS, Jong-Duek B, Yang K, Yoon S. Relationships between physical activity and awareness and treatment status among adults with low femoral bone density in the United States. Am J Health Promot 2012; 27:2-9. [PMID: 22950919 DOI: 10.4278/ajhp.110107-quan-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE To examine relationships between physical activity (PA) and awareness and treatment status of low bone mineral density (BMD) among adults. DESIGN Cross-sectional. SETTING Stratified sample of adults living independently in the community. SUBJECTS A total of 1928 adults aged 50 years and older who participated in the National Health and Nutrition Examination Survey 2005-2006 were included in the analysis. Among those, about 54% were women, 84% were non-Hispanic whites, 65% were married, and 44% were between 50 and 59 years of age. MEASURES Objective measures: femoral neck BMD and duration of PA and step counts measured by accelerometers. Self-report: strength exercise, and awareness and treatment of low bone density. ANALYSIS Multivariate regression analyses using SUDAAN. RESULTS Despite a high prevalence of low BMD, self-reported awareness, treatment, and PA were very low. After controlling socio-demographic and health-related factors, those who were aware of their low bone density status and who received treatment for it were less physically active than those who were unaware of their bone condition or who did not have any treatment. CONCLUSIONS PA levels are below the recommended level for bone health benefits. Health care providers should consider screening individuals at risk of low bone density and encourage them to implement prevention and treatment regimen including increasing daily levels of PA.
Collapse
Affiliation(s)
- Young-Shin Lee
- School of Nursing, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| | | | | | | |
Collapse
|
18
|
Nonnekes JH, Talelli P, de Niet M, Reynolds RF, Weerdesteyn V, Day BL. Deficits underlying impaired visually triggered step adjustments in mildly affected stroke patients. Neurorehabil Neural Repair 2009; 24:393-400. [PMID: 20018932 DOI: 10.1177/1545968309348317] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The ability to make step adjustments while walking is often impaired following a stroke, but the basic sensorimotor control deficits responsible have not been established. OBJECTIVE To identify these deficits in Patients who have recovered from stroke leaving only mild lower limb impairment. METHODS Ten stroke and 10 age-matched control patients stepped onto an illuminated rectangle. In 40% of trials it jumped 140 mm either medially or laterally when the stepping foot left the ground, thus provoking a mid-step adjustment. In a separate block, patients performed the same task but with the body supported by a frame to eliminate balance responses. RESULTS Irrespective of support condition stroke patients produced short-latency foot trajectory adjustments compatible with a fast-acting, possibly subcortical, visuomotor process. However, the latency was slightly but significantly longer for the contralesional leg (148 ms) than the ipsilesional leg (141 ms) and longer than for controls (129 ms). Stroke patients' foot adjustments were executed slower and undershot the target more than controls. These deficits were most pronounced in the medial direction when the body was unsupported. The pattern of undershooting was the same for ipsilesional and contralesional legs. CONCLUSIONS Mildly impaired stroke patients have deficits in initiating and executing visually triggered step adjustments but more profound difficulties with balance control during the adjustment, which caused them to suppress mid-step adjustments of foot placement in the medial direction where balance demands were greatest. Paradoxically, such suppression outside the laboratory may also threaten balance if it leads to unsafe foot placement or obstacle collision.
Collapse
Affiliation(s)
- Jorik H Nonnekes
- UCL Institute of Neurology, London, United Kingdom, Radboud University, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Roerdink M, Lamoth CJC, van Kordelaar J, Elich P, Konijnenbelt M, Kwakkel G, Beek PJ. Rhythm perturbations in acoustically paced treadmill walking after stroke. Neurorehabil Neural Repair 2009; 23:668-78. [PMID: 19307435 DOI: 10.1177/1545968309332879] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In rehabilitation, acoustic rhythms are often used to improve gait after stroke. Acoustic cueing may enhance gait coordination by creating a stable coupling between heel strikes and metronome beats and provide a means to train the adaptability of gait coordination to environmental changes, as required in everyday life ambulation. OBJECTIVE To examine the stability and adaptability of auditory-motor synchronization in acoustically paced treadmill walking in stroke patients. METHODS Eleven stroke patients and 10 healthy controls walked on a treadmill at preferred speed and cadence under no metronome, single-metronome (pacing only paretic or nonparetic steps), and double-metronome (pacing both footfalls) conditions. The stability of auditory-motor synchronization was quantified by the variability of the phase relation between footfalls and beats. In a separate session, the acoustic rhythms were perturbed and adaptations to restore auditory-motor synchronization were quantified. RESULTS For both groups, auditory-motor synchronization was more stable for double-metronome than single-metronome conditions, with stroke patients exhibiting an overall weaker coupling of footfalls to metronome beats than controls. The recovery characteristics following rhythm perturbations corroborated the stability findings and further revealed that stroke patients had difficulty in accelerating their steps and instead preferred a slower-step response to restore synchronization. CONCLUSIONS In gait rehabilitation practice, the use of acoustic rhythms may be more effective when both footfalls are paced. In addition, rhythm perturbations during acoustically paced treadmill walking may not only be employed to evaluate the stability of auditory-motor synchronization but also have promising implications for evaluation and training of gait adaptations in neurorehabilitation practice.
Collapse
Affiliation(s)
- Melvyn Roerdink
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University, Department of Rehabiliation Medicine, VU University Medical Centre, Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|