1
|
Sun Z, Yao X, Ding X, Li X, Tian X. MicroRNAs and their signaling pathway in mycosis fungoides. Medicine (Baltimore) 2022; 101:e29248. [PMID: 35758353 PMCID: PMC9276080 DOI: 10.1097/md.0000000000029248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Oncogenic microRNAs, a kind of stable epigenetic inhibitors, often deregulated in Mycosis fungoides (MF) which affect the skin and tend to transform and spread. RESULTS Previous studies investigating the de-expression of microRNA in MF patients skin biopsies identified that they were not only regulated by signaling pathway, but also regulated other signaling pathway. Furthermore, studies have elucidated the molecular mechanisms of the STAT signaling pathway that can promote a great diversity of miRNA expression via cytokine binding receptors, activating Janus kinase-3 and STAT proteins. But some non-STAT signaling pathway with mircoRNA de-expression in MF was incomplete. CONCLUSION Taken together, these studies demonstrate that microRNA may be used as the prognosis, progression and diagnose of MF, as they can not only control MF cell proliferation, but also induce MF cell apoptosis.
Collapse
|
2
|
Uryu M, Furue M. p16 INK4a Expression in Porokeratosis. Ann Dermatol 2017; 29:373-376. [PMID: 28566925 PMCID: PMC5438955 DOI: 10.5021/ad.2017.29.3.373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/16/2016] [Accepted: 06/27/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Miki Uryu
- Department of Dermatology, Kyushu University, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Kyushu University, Fukuoka, Japan.,Division of Skin Surface Sensing, Department of Dermatology, Kyushu University, Fukuoka, Japan.,Research and Clinical Center for Yusho and Dioxin, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Sahasrabuddhe AA. BMI1: A Biomarker of Hematologic Malignancies. BIOMARKERS IN CANCER 2016; 8:65-75. [PMID: 27168727 PMCID: PMC4859448 DOI: 10.4137/bic.s33376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
BMI1 oncogene is a catalytic member of epigenetic repressor polycomb group proteins. It plays a critical role in the regulation of gene expression pattern and consequently several cellular processes during development, including cell cycle progression, senescence, aging, apoptosis, angiogenesis, and importantly self-renewal of adult stem cells of several lineages. Preponderance of evidences indicates that deregulated expression of PcG protein BMI1 is associated with several human malignancies, cancer stem cell maintenance, and propagation. Importantly, overexpression of BMI1 correlates with therapy failure in cancer patients and tumor relapse. This review discusses the diverse mode of BMI1 regulation at transcriptional, posttranscriptional, and posttranslational levels as well as at various critical signaling pathways regulated by BMI1 activity. Furthermore, this review highlights the role of BMI1 as a biomarker and therapeutic target for several subtypes of hematologic malignancies and the importance to target this biomarker for therapeutic applications.
Collapse
Affiliation(s)
- Anagh A Sahasrabuddhe
- Department of Biotechnology, Pandit Ravishankar Shukla University, Chhattisgarh, India
| |
Collapse
|
4
|
Kitadate A, Ikeda S, Teshima K, Ito M, Toyota I, Hasunuma N, Takahashi N, Miyagaki T, Sugaya M, Tagawa H. MicroRNA-16 mediates the regulation of a senescence-apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas. Oncogene 2015; 35:3692-704. [PMID: 26640145 DOI: 10.1038/onc.2015.435] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 01/07/2023]
Abstract
Multiple sequential genetic and epigenetic alterations underlie cancer development and progression. Overcoming cellular senescence is an early step in cancer pathogenesis. Here, we demonstrate that a noncoding regulatory RNA, microRNA-16 (miR-16), has the potential to induce cellular senescence. First, we examined the expression of miR-16 in primary cutaneous T-cell lymphoma (CTCL) and other non-Hodgkin T/natural killer (NK)-cell lymphomas and found that miR-16 was downregulated than that in the corresponding normal cells. Notably, miR-16 expression was reduced as the primary CTCL progressed from the early stage to the advanced stage. Next, we transduced CTCL cells with miR-16 to examine whether this miRNA exhibited tumor-suppressive effects in CTCL cells. In CTCL cells expressing wild-type p53, forced expression of miR-16 enhanced p21 expression via downregulation of the polycomb group protein Bmi1, thereby inducing cellular senescence. Alternatively, in CTCL cells lacking functional p53, miR-16 induced compensatory apoptosis. The miR-16 transfection significantly decreased senescent cells and increased apoptotic cells in p21-knockdown CTCL cells expressing wild-type p53, suggesting that the presence or absence of p21 may be the most important condition in the senescence-apoptosis switch in CTCL lymphomagenesis. Furthermore, we found that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) restored the expression of miR-16 and its essential targets, induced senescence in CTCL cells expressing wild-type p53 and promoted apoptosis in cells with nonfunctional p53. Moreover, we found that other T/NK-cell lymphoma cell lines showed similar tumor-suppressive effects in response to miR-16 and SAHA and that these effects were dependent on p53 status. These results suggested that epigenetic silencing of miR-16 may be a key step during lymphoma development. Elucidation of the essential targets of miR-16 and SAHA provides a basis for the clinical application of SAHA in the treatment of CTCL and other non-Hodgkin T/NK-cell lymphomas.
Collapse
Affiliation(s)
- A Kitadate
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - S Ikeda
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - K Teshima
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - M Ito
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - I Toyota
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - N Hasunuma
- Department of Dermatology, Akita University, Akita, Japan
| | - N Takahashi
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - T Miyagaki
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | - M Sugaya
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | - H Tagawa
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
5
|
Abstract
This article reviews methotrexate and the more potent, related compound, pralatrexate, for the treatment of cutaneous T-cell lymphomas, including mycosis fungoides, Sézary syndrome, and CD30+ lymphoproliferative disorders. Although these folate antagonists are traditionally viewed as antiproliferative cell cycle inhibitors, it is recognized that they inhibit DNA methylation, providing a rationale for their use as epigenetic regulators and cell proliferation inhibitors. The underlying mechanisms are outlined, key supporting data presented, followed by brief mention of recent mathematical modeling supporting the general superiority of combination therapy. Several novel examples involving folate antagonists are proposed.
Collapse
Affiliation(s)
- Gary S Wood
- Department of Dermatology, University of Wisconsin and VA Medical Center, 7th Floor, One South Park, Madison, WI 53715, USA.
| | - Jianqiang Wu
- Department of Dermatology, University of Wisconsin and VA Medical Center, 7th Floor, One South Park, Madison, WI 53715, USA
| |
Collapse
|
6
|
Maj J, Jankowska-Konsur A, Plomer-Niezgoda E, Sadakierska-Chudy A, Reich A. Altered expression of Bcl-2, c-Myc, H-Ras, K-Ras, and N-Ras does not influence the course of mycosis fungoides. Arch Med Sci 2013; 9:895-8. [PMID: 24273576 PMCID: PMC3832835 DOI: 10.5114/aoms.2013.38684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/21/2012] [Accepted: 03/11/2012] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Data about genetic alterations in mycosis fungoides (MF) are limited and their significance not fully elucidated. The aim of the study was to explore the expression of various oncogenes in MF and to assess their influence on the disease course. MATERIAL AND METHODS Skin biopsies from 27 MF patients (14 with early MF and 13 with advanced disease) and 8 healthy volunteers were analyzed by real-time polymerase chain reaction (PCR) to detect Bcl-2, c-Myc, H-Ras, K-Ras and N-Ras expression. All PCR reactions were performed using an Applied Biosystems 7900HT Fast Real-Time PCR System and interpreted using Sequence Detection Systems software which utilizes the comparative delta Ct method. The level of mRNA was normalized to GAPDH expression. All data were analyzed statistically. RESULTS All evaluated oncogenes were found to be expressed in the skin from healthy controls and MF patients. Bcl-2 (-4.2 ±2.2 vs. -2.2 ±1.1; p = 0.01), H-Ras (-3.0 ±3.3 vs. 0.6 ±2.6; p = 0.01) and N-Ras (-3.6 ±2.0 vs. -1.1 ±2.4; p = 0.03) were expressed at significantly lower levels in MF. No relationships between oncogene expression and disease stage, presence of distant metastases and survival were observed (p > 0.05 for all comparisons). CONCLUSIONS The pathogenic role and prognostic significance of analyzed oncogenes in MF seem to be limited and further studies are needed to establish better prognostic factors for patients suffering from MF.
Collapse
Affiliation(s)
- Joanna Maj
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Alina Jankowska-Konsur
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Plomer-Niezgoda
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Sadakierska-Chudy
- Department of Forensic Medicine, Molecular Techniques Unit, Wroclaw Medical University, Wroclaw, Poland
- Department of Genetic Diagnostics and Nutrigenomics, Chair of Clinical Biochemistry, Medical College, Jagiellonian University, Krakow, Poland
| | - Adam Reich
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
7
|
Cancer stem cells: potential target for bioactive food components. J Nutr Biochem 2012; 23:691-8. [PMID: 22704055 DOI: 10.1016/j.jnutbio.2012.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/21/2012] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
Cancer stem cells often have phenotypic and functional characteristics similar to normal stem cells including the properties of self-renewal and differentiation. Recent findings suggest that uncontrolled self-renewal may explain cancer relapses and may represent a critical target for cancer prevention. It is conceivable that the loss of regulatory molecules resulting from inappropriate consumption of specific foods and their constituents may foster the aberrant self-renewal of cancer stem cells. In fact, increasing evidence points to the network delivering signals for self-renewal from extracellular compartments to the nucleus including changes in stem cell environments, inducible expression of microRNAs, hyperplastic nuclear chromatin structures, and the on/off of differentiation process as possible sites of action for bioactive food components. Diverse dietary constituents such as vitamins A and D, genistein, (-)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, piperine, theanine and choline have been shown to modify self-renewal properties of cancer stem cells. The ability of these bioactive food components to influence the balance between proliferative and quiescent cells by regulating critical feedback molecules in the network including dickkopf 1 (DKK-1), secreted frizzled-related protein 2 (sFRP2), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and cyclin-dependent kinase 6 (CDK6) may account for their biological response. Overall, the response to food components does not appear to be tissue or organ specific, suggesting there may be common cellular mechanisms. Unquestionably, additional studies are needed to clarify the physiological role of these dietary components in preventing the resistance of tumor cells to traditional drugs and cancer recurrence.
Collapse
|
8
|
BMI-1 autoantibody as a new potential biomarker for cervical carcinoma. PLoS One 2011; 6:e27804. [PMID: 22132147 PMCID: PMC3221654 DOI: 10.1371/journal.pone.0027804] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022] Open
Abstract
BMI-1 is overexpressed in a variety of cancers, which can elicit an immune response leading to the induction of autoantibodies. However, BMI-1 autoantibody as a biomarker has seldom been studied with the exception of nasopharyngeal carcinoma. Whether BMI-1 autoantibodies can be used as a biomarker for cervical carcinoma is unclear. In this study,BMI-1 proteins were isolated by screening of a T7 phage cDNA library from mixed cervical carcinoma tissues. We analyzed BMI-1 autoantibody levels in serum samples from 67 patients with cervical carcinoma and 65 controls using ELISA and immunoblot. BMI-1 mRNA or protein levels were over-expressed in cervical carcinoma cell lines. Immunoblot results exhibited increased BMI-1 autoantibody levels in patient sera compared to normal sera. Additionally, the results for antibody affinity assay showed that there was no difference between cervical polyps and normal sera of BMI-1 autoantibody levels, but it was significantly greater in patient sera than that in normal controls (patient 0.827±0.043 and normal 0.445±0.023; P<0.001). What's more, the levels of BMI-1 autoantibody increased significantly at stage I (0.672±0.019) compared to normal sera (P<0.001), and levels of BMI-1 autoantibodies were increased gradually during the tumor progression (stage I 0.672±0.019; stage II 0.775 ±0.019; stage III 0.890 ±0.027; stage IV 1.043±0.041), which were significantly correlated with disease progression of cervical cancer (P<0.001). Statistical analyses using logistic regression and receiver operating characteristics (ROC) curves indicated that the BMI-1 autoantibody level can be used as a biomarker for cervical carcinoma (sensitivity 0.78 and specificity 0.76; AUC = 0.922). In conclusion, measuring BMI-1 autoantibody levels of patients with cervical cancer could have clinical prognostic value as well as a non-tissue specific biomarker for neoplasms expressing BMI-1.
Collapse
|
9
|
Curiel-Lewandrowski C, Yamasaki H, Si CP, Jin X, Zhang Y, Richmond J, Tuzova M, Wilson K, Sullivan B, Jones D, Ryzhenko N, Little F, Kupper TS, Center DM, Cruikshank WW. Loss of nuclear pro-IL-16 facilitates cell cycle progression in human cutaneous T cell lymphoma. J Clin Invest 2011; 121:4838-49. [PMID: 22080865 DOI: 10.1172/jci41769] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 09/21/2011] [Indexed: 02/03/2023] Open
Abstract
Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of non-Hodgkin lymphomas that affect the skin. The pathogenesis of these conditions is poorly understood. For example, the signaling mechanisms contributing to the dysregulated growth of the neoplastic T cells are not well defined. Here, we demonstrate that loss of nuclear localization of pro-IL-16 facilitates CTCL cell proliferation by causing a decrease in expression of the cyclin dependent-kinase inhibitor p27Kip1. The decrease in p27Kip1 expression was directly attributable to an increase in expression of S-phase kinase-associated protein 2 (Skp2). Regulation of Skp2 is in part attributed to the nuclear presence of the scaffold protein pro-IL-16. T cells isolated from 11 patients with advanced CTCL, but not those from healthy controls or patients with T cell acute lymphocytic leukemia (T-ALL), demonstrated reduction in nuclear pro-IL-16 levels. Sequence analysis identified the presence of mutations in the 5' end of the PDZ1 region of pro-IL-16, a domain required for association of pro-IL-16 with the nuclear chaperone HSC70 (also known as HSPA8). HSC70 knockdown led to loss of nuclear translocation by pro-IL-16 and subsequent increases in Skp2 levels and decreases in p27Kip1 levels, which ultimately enhanced T cell proliferation. Thus, our data indicate that advanced CTCL cell growth is facilitated, at least in part, by mutations in the scaffold protein pro-IL-16, which directly regulates Skp2 synthesis.
Collapse
Affiliation(s)
- Clara Curiel-Lewandrowski
- Department of Dermatology, Cutaneous Oncology Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
High-throughput mutation profiling of CTCL samples reveals KRAS and NRAS mutations sensitizing tumors toward inhibition of the RAS/RAF/MEK signaling cascade. Blood 2011; 117:2433-40. [PMID: 21209378 DOI: 10.1182/blood-2010-09-305128] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) are malignancies of skin-homing lymphoid cells, which have so far not been investigated thoroughly for common oncogenic mutations. We screened 90 biopsy specimens from CTCL patients (41 mycosis fungoides, 36 Sézary syndrome, and 13 non-mycosis fungoides/Sézary syndrome CTCL) for somatic mutations using OncoMap technology. We detected oncogenic mutations for the RAS pathway in 4 of 90 samples. One mycosis fungoides and one pleomorphic CTCL harbored a KRAS(G13D) mutation; one Sézary syndrome and one CD30(+) CTCL harbored a NRAS(Q61K) amino acid change. All mutations were found in stage IV patients (4 of 42) who showed significantly decreased overall survival compared with stage IV patients without mutations (P = .04). In addition, we detected a NRAS(Q61K) mutation in the CTCL cell line Hut78. Knockdown of NRAS by siRNA induced apoptosis in mutant Hut78 cells but not in CTCL cell lines lacking RAS mutations. The NRAS(Q61K) mutation sensitized Hut78 cells toward growth inhibition by the MEK inhibitors U0126, AZD6244, and PD0325901. Furthermore, we found that MEK inhibitors exclusively induce apoptosis in Hut78 cells. Taken together, we conclude that RAS mutations are rare events at a late stage of CTCL, and our preclinical results suggest that such late-stage patients profit from MEK inhibitors.
Collapse
|
11
|
Abstract
Inactivation of the CDKN2A-CDKN2B locus has been reported in the most frequent subtypes of cutaneous T-cell lymphomas (CTCLs), mycosis fungoides, Sézary syndrome (SS) and CD30+ cutaneous anaplastic large cell lymphoma. To investigate whether genetic or epigenetic inactivation of CDKN2A-CDKN2B is more specifically observed in certain CTCL subtypes with clinical impact, we used array-comparative genomic hybridization, quantitative PCR, interphase fluorescent in situ hybridization and methylation analyses of p14(ARF) p16(INK4A) and p15(INK4B) promoters. We studied 67 samples from 58 patients with either transformed mycosis fungoides (n=24), SS (n=16) or CD30+ cutaneous anaplastic large cell lymphoma (n=18). We observed combined CDKN2A-CDKN2B deletion in both transformed mycosis fungoides (n=17, 71%) and SS patients (n=7, 44%), but, surprisingly, in only one CD30+ cutaneous anaplastic large cell lymphoma case. Interphase fluorescent in situ hybridization showed 9p21 loss in 17 out of 19 cases, with 9p21 deletion indicating either hemizygous (n=4) or homozygous (n=2) deletion, with mixed patterns in most patients (n=11). The limited size of 9p21 deletion was found to account for false-negative detection by either BAC arrays (n=9) or fluorescent in situ hybridization (n=2), especially in patients with Sézary syndrome (n=6). Methylation was found to be restricted to the p15(INK4B) gene promoter in patients with or without 9p21 deletion and did not correlate with prognosis. In contrast, CDKN2A-CDKN2B genetic loss was strongly associated with a shorter survival in CTCL patients (P=0.002) and more specifically at 24 months in transformed mycosis fungoides and SS patients (P=0.02). As immunohistochemistry for p16(INK4A) protein was not found to be informative, the genetic status of the CDKN2A-CDKN2B locus would be relevant in assessing patients with epidermotropic CTCLs in order to identify those cases where the disease was more aggressive.
Collapse
|
12
|
Drug Insight: histone deacetylase inhibitor-based therapies for cutaneous T-cell lymphomas. ACTA ACUST UNITED AC 2008; 5:714-26. [DOI: 10.1038/ncponc1238] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/07/2008] [Indexed: 01/16/2023]
|
13
|
Abstract
Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is a malignancy of mature, skin-homing T cells. Sézary syndrome (Sz) is often considered to represent a leukemic phase of MF. In this study, the pattern of numerical chromosomal alterations in MF tumor samples was defined using array-based comparative genomic hybridization (CGH); simultaneously, gene expression was analyzed using microarrays. Highly recurrent chromosomal alterations in MF include gain of 7q36, 7q21-7q22 and loss of 5q13 and 9p21. The pattern characteristic of MF differs markedly from chromosomal alterations observed in Sz. Integration of data from array-based CGH and gene-expression analysis yielded several candidate genes with potential relevance in the pathogenesis of MF. We confirmed that the FASTK and SKAP1 genes, residing in loci with recurrent gain, demonstrated increased expression. The RB1 and DLEU1 tumor suppressor genes showed diminished expression associated with loss. In addition, it was found that the presence of chromosomal alterations on 9p21, 8q24, and 1q21-1q22 was associated with poor prognosis in patients with MF. This study provides novel insight into genetic alterations underlying MF. Furthermore, our analysis uncovered genomic differences between MF and Sz, which suggest that the molecular pathogenesis and therefore therapeutic requirements of these cutaneous T-cell lymphomas may be distinct.
Collapse
|