1
|
Xu X, Wang X, Li Y, Chen R, Wen H, Wang Y, Ma G. Research progress of ankyrin repeat domain 1 protein: an updated review. Cell Mol Biol Lett 2024; 29:131. [PMID: 39420247 PMCID: PMC11488291 DOI: 10.1186/s11658-024-00647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Ankyrin repeat domain 1 (Ankrd1) is an acute response protein that belongs to the muscle ankyrin repeat protein (MARP) family. Accumulating evidence has revealed that Ankrd1 plays a crucial role in a wide range of biological processes and diseases. This review consolidates current knowledge on Ankrd1's functions in myocardium and skeletal muscle development, neurogenesis, cancer, bone formation, angiogenesis, wound healing, fibrosis, apoptosis, inflammation, and infection. The comprehensive profile of Ankrd1 in cardiovascular diseases, myopathy, and its potential as a candidate prognostic and diagnostic biomarker are also discussed. In the future, more studies of Ankrd1 are warranted to clarify its role in diseases and assess its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xusan Xu
- Maternal and Child Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaoxia Wang
- Department of Neurology, Longjiang Hospital, Foshan, 528300, China
| | - Yu Li
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Houlang Wen
- Medical Genetics Laboratory, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Yajun Wang
- Respiratory Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Guoda Ma
- Maternal and Child Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| |
Collapse
|
2
|
Milosevic E, Novkovic M, Cenni V, Bavelloni A, Kojic S, Jasnic J. Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation. Histochem Cell Biol 2024; 161:435-444. [PMID: 38396247 DOI: 10.1007/s00418-024-02272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.
Collapse
Affiliation(s)
- Emilija Milosevic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Mirjana Novkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi-Luca Cavalli-Sforza" Unit of Bologna, Via di Barbiano 1/10, 40136, Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| |
Collapse
|
3
|
Xu X, Zhong D, Wang X, Luo F, Zheng X, Feng T, Chen R, Cheng Y, Wang Y, Ma G. Pan-cancer integrated analysis of ANKRD1 expression, prognostic value, and potential implications in cancer. Sci Rep 2024; 14:5268. [PMID: 38438492 PMCID: PMC10912109 DOI: 10.1038/s41598-024-56105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
There is substantial evidence demonstrating the crucial role of inflammation in oncogenesis. ANKRD1 has been identified as an anti-inflammatory factor and is related to tumor drug resistance. However, there have been no studies investigating the prognostic value and molecular function of ANKRD1 in pan-cancer. In this study, we utilized the TCGA, GTEx, GSCALite, ENCORI, CTRP, DAVID, AmiGO 2, and KEGG databases as well as R language, to explore and visualize the role of ANKRD1 in tumors. We employed the ROC curve to explore its diagnostic significance, while the Kaplan-Meier survival curve and Cox regression analysis were used to investigate its prognostic value. Additionally, we performed Pearson correlation analysis to evaluate the association between ANKRD1 expression and DNA methylation, immune cell infiltration, immune checkpoints, TMB, MSI, MMR, and GSVA. Our findings indicate that ANKRD1 expression is dysregulated in pan-cancer. The ROC curve revealed that ANKRD1 expression is highly sensitive and specific in diagnosing CHOL, LUAD, LUSC, PAAD, SKCM, and UCS (AUC > 85.0%, P < 0.001). Higher ANKRD1 expression was related to higher overall survival (OS) in LGG, but with lower OS in COAD and STAD (P < 0.001). Moreover, Cox regression and nomogram analyzes suggested that ANKRD1 is an independent factor for COAD, GBM, HNSC, and LUSC. Dysregulation of ANKRD1 expression in pan-cancer involves DNA methylation and microRNA regulation. Using the CTRP database, we discovered that ANKRD1 may influence the half-maximal inhibitory concentration (IC50) of several anti-tumor drugs. ANKRD1 expression showed significant correlations with immune cell infiltration (including cancer-associated fibroblast and M2 macrophages), immune checkpoints, TMB, MSI, and MMR. Furthermore, ANKRD1 is involved in various inflammatory and immune pathways in COAD, GBM, and LUSC, as well as cardiac functions in HNSC. In vitro experiments demonstrated that ANKRD1 promotes migration, and invasion activity, while inhibiting apoptosis in colorectal cancer cell lines (Caco2, SW480). In summary, ANKRD1 represents a potential prognostic biomarker and therapeutic target in human cancers, particularly in COAD.
Collapse
Affiliation(s)
- Xusan Xu
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Dan Zhong
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaoxia Wang
- Department of Neurology, Longjiang Hospital, Foshan, 528300, China
| | - Fei Luo
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaomei Zheng
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Taoshan Feng
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Yisen Cheng
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Yajun Wang
- Institute of Children's Respiratory Diseases, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Guoda Ma
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| |
Collapse
|
4
|
Chagula DB, Rechciński T, Rudnicka K, Chmiela M. Ankyrins in human health and disease - an update of recent experimental findings. Arch Med Sci 2020; 16:715-726. [PMID: 32542072 PMCID: PMC7286341 DOI: 10.5114/aoms.2019.89836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/25/2018] [Indexed: 12/17/2022] Open
Abstract
Ankyrins are adaptor molecules that in eukaryotic cells form complexes with ion channel proteins, cell adhesion and signalling molecules and components of the cytoskeleton. They play a pivotal role as scaffolding proteins, in the structural anchoring to the muscle membrane, in muscle development, neurogenesis and synapse formation. Dysfunction of ankyrins is implicated in numerous diseases such as hereditary spherocytosis, neurodegeneration of Purkinje cells, cardiac arrhythmia, Brugada syndrome, bipolar disorders and schizophrenia, congenital myopathies and congenital heart disease as well as cancers. Detecting either down- or over-expression of ankyrins and ergo their use as biomarkers can provide a new paradigm in the diagnosis of these diseases. This paper provides an outline of knowledge about the structure of ankyrins, and by making use of recent experimental research studies critically discusses their role in several health disorders. Moreover, therapeutic options utilizing engineered ankyrins, designed ankyrin repeat proteins (DARPins), are discussed.
Collapse
Affiliation(s)
- Damian B. Chagula
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Tomasz Rechciński
- Department of Cardiology, Bieganski Regional Speciality Hospital, Medical University of Lodz, Lodz, Poland
| | - Karolina Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Chmiela
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Corresponding author: Prof. Magdalena Chmiela Laboratory of Gastroimmunology, Department of Immmunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Lodz, Poland, E-mail:
| |
Collapse
|
5
|
Paul A, Sil J. Identification of Differentially Expressed Genes to Establish New Biomarker for Cancer Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1970-1985. [PMID: 29994718 DOI: 10.1109/tcbb.2018.2837095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The goal of the human genome project is to integrate genetic information into different clinical therapies. To achieve this goal, different computational algorithms are devised for identifying the biomarker genes, cause of complex diseases. However, most of the methods developed so far using DNA microarray data lack in interpreting biological findings and are less accurate in disease prediction. In the paper, we propose two parameters risk_factor and confusion_factor to identify the biologically significant genes for cancer development. First, we evaluate risk_factor of each gene and the genes with nonzero risk_factor result misclassification of data, therefore removed. Next, we calculate confusion_factor of the remaining genes which determines confusion of a gene in prediction due to closeness of the samples in the cancer and normal classes. We apply nondominated sorting genetic algorithm (NSGA-II) to select the maximally uncorrelated differentially expressed genes in the cancer class with minimum confusion_factor. The proposed Gene Selection Explore (GSE) algorithm is compared to well established feature selection algorithms using 10 microarray data with respect to sensitivity, specificity, and accuracy. The identified genes appear in KEGG pathway and have several biological importance.
Collapse
|
6
|
Takahashi A, Seike M, Chiba M, Takahashi S, Nakamichi S, Matsumoto M, Takeuchi S, Minegishi Y, Noro R, Kunugi S, Kubota K, Gemma A. Ankyrin Repeat Domain 1 Overexpression is Associated with Common Resistance to Afatinib and Osimertinib in EGFR-mutant Lung Cancer. Sci Rep 2018; 8:14896. [PMID: 30291293 PMCID: PMC6173712 DOI: 10.1038/s41598-018-33190-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
Overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is critical in combating EGFR-mutant non-small cell lung cancer (NSCLC). We tried to construct a novel therapeutic strategy to conquer the resistance to second-and third-generation EGFR-TKIs in EGFR-positive NSCLC patients. We established afatinib- and osimertinib-resistant lung adenocarcinoma cell lines. Exome sequencing, cDNA array and miRNA microarray were performed using the established cell lines to discover novel therapeutic targets associated with the resistance to second-and third-generation EGFR-TKIs. We found that ANKRD1 which is associated with the epithelial-mesenchymal transition (EMT) phenomenon and anti-apoptosis, was overexpressed in the second-and third-generation EGFR-TKIs-resistant cells at the mRNA and protein expression levels. When ANKRD1 was silenced in the EGFR-TKIs-resistant cell lines, afatinib and osimertinib could induce apoptosis of the cell lines. Imatinib could inhibit ANKRD1 expression, resulting in restoration of the sensitivity to afatinib and osimertinib of EGFR-TKI-resistant cells. In EGFR-mutant NSCLC patients, ANKRD1 was overexpressed in the tumor after the failure of EGFR-TKI therapy, especially after long-duration EGFR-TKI treatments. ANKRD1 overexpression which was associated with EMT features and anti-apoptosis, was commonly involved in resistance to second-and third-generation EGFR-TKIs. ANKRD1 inhibition could be a promising therapeutic strategy in EGFR-mutant NSCLC patients.
Collapse
Affiliation(s)
- Akiko Takahashi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Masahiro Seike
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.
| | - Mika Chiba
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Shinji Nakamichi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Masaru Matsumoto
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Susumu Takeuchi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Yuji Minegishi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Rintaro Noro
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Shinobu Kunugi
- Division of Pathology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Kaoru Kubota
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Gemma
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Qin Y, Sekine I, Fan M, Takiguchi Y, Tada Y, Shingyoji M, Hanazono M, Yamaguchi N, Tagawa M. Augmented expression of cardiac ankyrin repeat protein is induced by pemetrexed and a possible marker for the pemetrexed resistance in mesothelioma cells. Cancer Cell Int 2017; 17:120. [PMID: 29238267 PMCID: PMC5725641 DOI: 10.1186/s12935-017-0493-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022] Open
Abstract
Background Pemetrexed (PEM) is an anti-cancer agent targeting DNA and RNA synthesis, and clinically in use for mesothelioma and non-small cell lung carcinoma. A mechanism of resistance to PEM is associated with elevated activities of several enzymes involved in nucleic acid metabolism. Methods We established two kinds of PEM-resistant mesothelioma cells which did not show any increase of the relevant enzyme activities. We screened genes enhanced in the PEM-resistant cells with a microarray analysis and confirmed the expression levels with Western blot analysis. A possible involvement of the candidates in the PEM-resistance was examined with a WST assay after knocking down the expression with si-RNA. We also analyzed a mechanism of the up-regulated expression with agents influencing AMP-activated protein kinase (AMPK) and p53. Results We found that expression of cardiac ankyrin repeat protein (CARP) was elevated in the PEM-resistant cells with a microarray and Western blot analysis. Down-regulation of CARP expression with si-RNA did not however influence the PEM resistance. Parent and PEM-resistant cells treated with PEM increased expression of CARP, AMPK, p53 and histone H2AX. The CARP up-regulation was however irrelevant to the p53 genotypes and not induced by an AMPK activator. Augmented p53 levels with nutlin-3a, an inhibitor for p53 degradation, and DNA damages were not always associated with the enhanced CARP expression. Conclusions These data collectively suggest that up-regulated CARP expression is a potential marker for development of PEM-resistance in mesothelioma and that the PEM-mediated enhanced expression is not directly linked with immediate cellular responses to PEM. Electronic supplementary material The online version of this article (10.1186/s12935-017-0493-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiyang Qin
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mengmeng Fan
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
Zhang N, Xie XJ, Wang JA. Multifunctional protein: cardiac ankyrin repeat protein. J Zhejiang Univ Sci B 2017; 17:333-41. [PMID: 27143260 DOI: 10.1631/jzus.b1500247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac ankyrin repeat protein (CARP) not only serves as an important component of muscle sarcomere in the cytoplasm, but also acts as a transcription co-factor in the nucleus. Previous studies have demonstrated that CARP is up-regulated in some cardiovascular disorders and muscle diseases; however, its role in these diseases remains controversial now. In this review, we will discuss the continued progress in the research related to CARP, including its discovery, structure, and the role it plays in cardiac development and heart diseases.
Collapse
Affiliation(s)
- Na Zhang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiao-Jie Xie
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian-An Wang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
9
|
Ostrowski S, Marcinkiewicz A, Kośmider A, Jaszewski R. Sarcomas of the heart as a difficult interdisciplinary problem. Arch Med Sci 2014; 10:135-48. [PMID: 24701226 PMCID: PMC3953983 DOI: 10.5114/aoms.2014.40741] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/10/2011] [Accepted: 03/20/2011] [Indexed: 12/17/2022] Open
Abstract
Cardiac tumors are assumed to be a rare entity. Metastases to the heart are more frequent than primary lesions. Sarcomas make up the majority of cardiac malignant neoplasms. Among them angiosarcoma is the most common and associated with the worst prognosis. Malignant fibrous histiocytoma comprises the minority of cardiac sarcomas and has uncertain etiology as well as pathogenesis. Transthoracic echocardiography remains the widely available screening examination for the initial diagnosis of a cardiac tumor. The clinical presentation is non-specific and the diagnosis is established usually at an advanced stage of the disease. Sarcomas spread preferentially through blood due to their immature vessels without endothelial lining. Surgery remains the method of choice for treatment. Radicalness of the excision is still the most valuable prognostic factor. Adjuvant therapy is unlikely to be effective. The management of cardiac sarcomas must be individualized due to their rarity and significant differences in the course of disease.
Collapse
Affiliation(s)
- Stanisław Ostrowski
- Department of Cardiac Surgery, Chair of Cardiology and Cardiac Surgery, Medical University of Lodz, Poland
- Military Teaching Hospital – Veterans Central Hospital, Lodz, Poland
| | - Anna Marcinkiewicz
- Department of Cardiac Surgery, Chair of Cardiology and Cardiac Surgery, Medical University of Lodz, Poland
- Military Teaching Hospital – Veterans Central Hospital, Lodz, Poland
| | - Anna Kośmider
- Military Teaching Hospital – Veterans Central Hospital, Lodz, Poland
| | - Ryszard Jaszewski
- Department of Cardiac Surgery, Chair of Cardiology and Cardiac Surgery, Medical University of Lodz, Poland
- Military Teaching Hospital – Veterans Central Hospital, Lodz, Poland
| |
Collapse
|
10
|
Lei Y, Henderson BR, Emmanuel C, Harnett PR, deFazio A. Inhibition of ANKRD1 sensitizes human ovarian cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncogene 2014; 34:485-95. [PMID: 24531715 DOI: 10.1038/onc.2013.566] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 11/30/2013] [Accepted: 12/07/2013] [Indexed: 02/07/2023]
Abstract
High expression of Ankyrin Repeat Domain 1 (ANKRD1) in ovarian carcinoma is associated with poor survival, and in ovarian cancer cell lines is associated with platinum resistance. Importantly, decreasing ANKRD1 expression using siRNA increases cisplatin sensitivity. In this study, we investigated possible mechanisms underlying the association of ANKRD1 with cisplatin response. We first demonstrated that cisplatin-induced apoptosis in ovarian cancer cell lines was associated with endoplasmic reticulum (ER) stress, evidenced by induction of Glucose-Regulated Protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153) and increased intracellular Ca(2+) release. The level of sensitivity to cisplatin-induced apoptosis was associated with ANKRD1 protein levels and poly (ADP-ribose) polymerase (PARP) cleavage. COLO 316 ovarian cancer cells, which express high ANKRD1 levels, were relatively resistant to cisplatin, and ER stress-induced apoptosis, whereas OAW42 and PEO14 cells, which express lower ANKRD1 levels, are more sensitive to ER stress-induced apoptosis. Furthermore, we show that overexpression of ANKRD1 attenuated cisplatin-induced cytotoxicity, and conversely siRNA knockdown of ANKRD1 sensitized ovarian cancer cells to cisplatin and ER stress-induced apoptosis associated with induction of GADD153, and downregulation of BCL2 and BCL-XL. Taken together, these results suggest that ANKRD1 has a significant role in the regulation of apoptosis in human ovarian cancer cells, and is a potential molecular target to enhance sensitivity of ovarian cancer to chemotherapy.
Collapse
Affiliation(s)
- Y Lei
- 1] Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia [2] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - B R Henderson
- Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - C Emmanuel
- 1] Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia [2] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - P R Harnett
- 1] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia [2] Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - A deFazio
- 1] Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia [2] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia [3] Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
11
|
Cloning, expression, and bioinformatics analysis of the sheep CARP gene. Mol Cell Biochem 2013; 378:29-37. [PMID: 23475534 DOI: 10.1007/s11010-013-1590-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/08/2013] [Indexed: 12/24/2022]
Abstract
The cardiac ankyrin repeat protein (CARP) is a multifunctional protein that is expressed specifically in mammalian cardiac muscle and plays important roles in stress responses, transcriptional regulation, myofibrillar assembly, and the development of cardiac and skeletal muscle. In this study, the sheep homolog of the CARP gene was cloned and characterized. The coding region of the gene consists of 960 bp and encodes 319 amino acids with molecular weight 36.2 KD. Bioinformatics analysis demonstrated that the 3' untranslated region (3'-UTR) of the gene contains many AU-rich elements that are associated with mRNA stability and a potential regulatory site for miRNA binding. The protein was predicted to contain 14 potential phosphorylation sites and an O-GlcNAc glycosylation site and to be expressed in both the nucleus and cytoplasm. The evolutionary analysis revealed that the sheep CARP exhibited a high level of homology with the mammalian counterparts; however, the protein exhibited an increased evolutionary distance from the chicken, frog, and fish homologs. RT-PCR revealed that in addition to its high mRNA expression level in cardiac muscle, trace amounts of the sheep CARP mRNA were expressed in the skeletal muscle, stomach, and small intestine. However, western blot analysis demonstrated that the CARP protein was expressed only in cardiac muscle. The coding sequence was cloned into the pET30a-TEV-LIC vector, and the soluble CARP-MBP (maltose-binding protein) fusion protein was expressed in a prokaryotic host and purified by affinity chromatography. Our data provide the basis for future studies of the structure and function of sheep CARP.
Collapse
|
12
|
Hatley ME, Tang W, Garcia MR, Finkelstein D, Millay DP, Liu N, Graff J, Galindo RL, Olson EN. A mouse model of rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell 2012; 22:536-46. [PMID: 23079662 PMCID: PMC3479681 DOI: 10.1016/j.ccr.2012.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/17/2012] [Accepted: 09/04/2012] [Indexed: 12/11/2022]
Abstract
Rhabdomyosarcoma (RMS) is an aggressive skeletal muscle-lineage tumor composed of malignant myoblasts that fail to exit the cell cycle and are blocked from fusing into syncytial muscle. Rhabdomyosarcoma includes two histolopathologic subtypes: alveolar rhabdomyosarcoma, driven by the fusion protein PAX3-FOXO1 or PAX7-FOXO1, and embryonal rhabdomyosarcoma (ERMS), which is genetically heterogeneous. Here, we show that adipocyte-restricted activation of Sonic hedgehog signaling through expression of a constitutively active Smoothened allele in mice gives rise to aggressive skeletal muscle tumors that display the histologic and molecular characteristics of human ERMS with high penetrance. Our findings suggest that adipocyte progenitors can be a cell of origin for Sonic hedgehog-driven ERMS, showing that RMS can originate from nonskeletal muscle precursors.
Collapse
Affiliation(s)
- Mark E. Hatley
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
- Department of Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 28105, USA
| | - Wei Tang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Matthew R. Garcia
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
- Department of Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 28105, USA
| | - David Finkelstein
- Department of Biostatistics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 28105, USA
| | - Douglas P. Millay
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Jonathan Graff
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Rene L. Galindo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
- Address correspondence to: Eric N. Olson, Phone: 214-648-1187, Fax: 214-648-1196, Or Rene L. Galindo, Phone: 214-648-4116, Fax: 214-648-4070,
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
- Address correspondence to: Eric N. Olson, Phone: 214-648-1187, Fax: 214-648-1196, Or Rene L. Galindo, Phone: 214-648-4116, Fax: 214-648-4070,
| |
Collapse
|
13
|
Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit Rev Clin Lab Sci 2011; 48:269-94. [DOI: 10.3109/10408363.2011.643857] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Abstract
MARP Protein Family: A Possible Role in Molecular Mechanisms of TumorigenesisThe MARP (muscle ankyrin repeat protein) family comprises three structurally similar proteins: CARP/Ankrd1, Ankrd2/Arpp and DARP/Ankrd23. They share four conserved copies of 33-residue ankyrin repeats and contain a nuclear localization signal, allowing the sorting of MARPs to the nucleus. They are found both in the nucleus and in the cytoplasm of skeletal and cardiac muscle cells, suggesting that MARPs shuttle within the cell enabling them to play a role in signal transduction in striated muscle. Expression of MARPs is altered under different pathological conditions. In skeletal muscle, CARP/Ankrd1 and Ankrd2/Arpp are up-regulated in muscle in patients suffering from Duchene muscular dystrophy, congenital myopathy and spinal muscular atrophy. Mutations inAnkrd1gene (coding CARP/Ankrd1) were identified in dilated and hypertrophic cardiomyopathies. Altered expression of MARPs is also observed in rhabdomyosarcoma, renal oncocytoma and ovarian cancer. In order to functionally characterize MARP family members CARP/Ankrd1 and Ankrd2/Arpp, we have found that both proteins interact with the tumor suppressor p53 bothin vivoandin vitroand that p53 up-regulates their expression. Our results implicate the potential role of MARPs in molecular mechanisms relevant to tumor response and progression.
Collapse
|