1
|
Khong QT, Marron L, Huang SYN, Dalilian M, Saha S, Goncharova EI, Woldemichael GM, Pommier Y, O'Keefe BR, Wilson BAP, Du L. Furanoheliangolides from Centratherum punctatum and a General Approach for Stereochemical Assignment of Flexible Chiral Side Chains. JOURNAL OF NATURAL PRODUCTS 2025. [PMID: 40402310 DOI: 10.1021/acs.jnatprod.5c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Human topoisomerase 3β (TOP3B) is a potential molecular therapeutic target for cancer and viral infections. A high-throughput differential cell viability assay using colon cancer cell lines was developed to identify natural product modulators of TOP3B-associated cancer cell viability. The assay identified an organic extract of the plant Centratherum punctatum as having cytotoxic activity. Seven new furanoheliangolides, centratherolides A-G (1-7), along with two known analogues (2,3-epoxybutyryloxy)-goyazensolanolide (8) and goyazensolide (9), were isolated. Compounds 1, 8, and 9 exhibited selective cytotoxic activities against the TOP3B-knockout (TOP3B-KO) human colon carcinoma HCT116 cells compared with the wild-type HCT116 cells (TOP3B-WT). The challenging absolute configuration determination of the flexible chiral side chains in selected analogues (1-4 and 8) was resolved by combined approaches, including synthesis of chemical standards, DFT ECD calculation, and chiral HPLC analysis. Application of this elucidation methodology to a commercial sesquiterpene lactone clarified a contradiction in the stereochemical assignments reported for centaurepensin/chlorohyssopifolin A and 17-epi-chlorohyssopifolin A.
Collapse
Affiliation(s)
- Quan T Khong
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Lindsay Marron
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Shar-Yin Naomi Huang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Masoumeh Dalilian
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sourav Saha
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Ekaterina I Goncharova
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Girma M Woldemichael
- Leidos Biomedical Res., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21701, United States
| | - Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Lin Du
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
2
|
Wang G, Gan X, Chen X, Zeng Q, Zhang Z, Li J, Guo Z, Hou LC, Xu J, Kang H, Guo F. Genomic Insights into the Role of TOP Gene Family in Soft-Tissue Sarcomas: Implications for Prognosis and Therapy. Adv Biol (Weinh) 2024; 8:e2300678. [PMID: 38837283 DOI: 10.1002/adbi.202300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Indexed: 06/07/2024]
Abstract
This study focuses on the role of topoisomerases (TOPs) in sarcomas (SARCs), highlighting TOPs' influence on sarcoma prognosis through mRNA expression, genetic mutations, immune infiltration, and DNA methylation analysis using transcriptase sequencing and other techniques. The findings indicate that TOP gene mutations correlate with increased inflammation, immune cell infiltration, DNA repair abnormalities, and mitochondrial fusion genes alterations, all of which negatively affect sarcoma prognosis. Abnormal TOP expression may independently affect sarcoma patients' survival. Cutting-edge genomic tools such as Oncomine, gene expression profiling interactive analysis (GEPIA), and cBio Cancer Genomics Portal (cBioPortal) are utilized to explore the TOP gene family (TOP1/1MT/2A/2B/3A/3B) in soft-tissue sarcomas (STSs). This in-depth analysis reveals a notable upregulation of TOP mRNA in STS patients arcoss various SARC subtypes, French Federation Nationale des Centres de Lutte Contre le Cancer classification (FNCLCC) grades, and specific molecular profiles correlating with poorer clinical outcomes. Furthermore, this investigation identifies distinct patterns of immune cell infiltration, genetic mutations, and somatic copy number variations linked to TOP genes that inversely affect patient survival rates. These findings underscore the diagnostic and therapeutic relevance of the TOP gene suite in STSs.
Collapse
Affiliation(s)
- Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qunqian Zeng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuoran Zhang
- The Second Clinical School of Hubei University of Medicine, Shiyan City, Hubei, 442000, China
| | - Jiantao Li
- The Fifth Clinical School of Hubei University of Medicine, Shiyan City, Hubei, 442000, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liang Cai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - JingTing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
3
|
Saha S, Huang SYN, Yang X, Saha LK, Sun Y, Khandagale P, Jenkins LM, Pommier Y. The TDRD3-USP9X complex and MIB1 regulate TOP3B homeostasis and prevent deleterious TOP3B cleavage complexes. Nat Commun 2023; 14:7524. [PMID: 37980342 PMCID: PMC10657456 DOI: 10.1038/s41467-023-43151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023] Open
Abstract
TOP3B is stabilized by TDRD3. Hypothesizing that TDRD3 recruits a deubiquitinase, we find that TOP3B interacts with USP9X via TDRD3. Inactivation of USP9X destabilizes TOP3B, and depletion of both TDRD3 and USP9X does not promote further TOP3B ubiquitylation. Additionally, we observe that MIB1 mediates the ubiquitylation and proteasomal degradation of TOP3B by directly interacting with TOP3B independently of TDRD3. Combined depletion of USP9X, TDRD3 and MIB1 causes no additional increase in TOP3B levels compared to MIB1 knockdown alone indicating that the TDRD3-USP9X complex works downstream of MIB1. To comprehend why cells degrade TOP3B in the absence of TDRD3, we measured TOP3Bccs. Lack of TDRD3 increases TOP3Bccs in DNA and RNA, and induced R-loops, γH2AX and growth defect. Biochemical experiments confirm that TDRD3 increases the turnover of TOP3B. Our work provides molecular insights into the mechanisms by which TDRD3 protect cells from deleterious TOP3Bccs which are otherwise removed by TRIM41.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Prashant Khandagale
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Saha S, Yang X, Huang SYN, Agama K, Baechler SA, Sun Y, Zhang H, Saha LK, Su S, Jenkins LM, Wang W, Pommier Y. Resolution of R-loops by topoisomerase III-β (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Rep 2022; 40:111067. [PMID: 35830799 PMCID: PMC10575568 DOI: 10.1016/j.celrep.2022.111067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The present study demonstrates how TOP3B is involved in resolving R-loops. We observed elevated R-loops in TOP3B knockout cells (TOP3BKO), which are suppressed by TOP3B transfection. R-loop-inducing agents, the topoisomerase I inhibitor camptothecin, and the splicing inhibitor pladienolide-B also induce higher R-loops in TOP3BKO cells. Camptothecin- and pladienolide-B-induced R-loops are concurrent with the induction of TOP3B cleavage complexes (TOP3Bccs). RNA/DNA hybrid IP-western blotting show that TOP3B is physically associated with R-loops. Biochemical assays using recombinant TOP3B and oligonucleotides mimicking R-loops show that TOP3B cleaves the single-stranded DNA displaced by the R-loop RNA-DNA duplex. IP-mass spectrometry and IP-western experiments reveal that TOP3B interacts with the R-loop helicase DDX5 independently of TDRD3. Finally, we demonstrate that DDX5 and TOP3B are epistatic in resolving R-loops in a pathway parallel with senataxin. We propose a decatenation model for R-loop resolution by TOP3B-DDX5 protecting cells from R-loop-induced damage.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Zhang X, Wang L, Zhang Q, Lyu S, Zhu D, Shen M, Ke X, Qu Y. Small molecule targeting topoisomerase 3β for cancer therapy. Pharmacol Res 2021; 174:105927. [PMID: 34740818 DOI: 10.1016/j.phrs.2021.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022]
Abstract
DNA topoisomerases are proved cancer therapeutic targets with clinically successful anticancer drugs for decades. However, the role of RNA topoisomerase (TOP3β) remained mysterious especially in cancer, and no targeted agent has been reported yet. In a target identification assay of anti-cancer compound using a modified DrugTargetSeqR strategy, mutation of TOP3B was detected in cancer cells acquired resistance to cinobufagin (CBG), a key compound of Huachansu that has been approved for cancer therapy in China. We demonstrated that CBG directly engaged with TOP3β, and promoted TOP3β depletion in wildtype but not mutant cancer cells. Notably, knockout of TOP3β in cancer cells significantly reduced tumor enlargement but not initiation, and inhibited colony formation upon nutrient deprivation. We also demonstrated that CBG induced formation of stress granule, RNA-loop and asymmetric DNA damages in cancer cells, and all these phenotypes were significantly attenuated in TOP3B knockout cells. Of note, examination of a panel of cancer cell lines revealed associations among cell growth inhibition and induction of DNA damage as well as TOP3B depletion upon CBG treatment. Our findings not only highlighted TOP3β as a promising therapeutic target of cancer, but also identified CBG as a lead chemical inhibitor of TOP3β for cancer therapy.
Collapse
Affiliation(s)
- Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Lei Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Qi Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Song Lyu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Darong Zhu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Mengzhen Shen
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
6
|
Cristini A, Géraud M, Sordet O. Transcription-associated DNA breaks and cancer: A matter of DNA topology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:195-240. [PMID: 34507784 DOI: 10.1016/bs.ircmb.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription is an essential cellular process but also a major threat to genome integrity. Transcription-associated DNA breaks are particularly detrimental as their defective repair can induce gene mutations and oncogenic chromosomal translocations, which are hallmarks of cancer. The past few years have revealed that transcriptional breaks mainly originate from DNA topological problems generated by the transcribing RNA polymerases. Defective removal of transcription-induced DNA torsional stress impacts on transcription itself and promotes secondary DNA structures, such as R-loops, which can induce DNA breaks and genome instability. Paradoxically, as they relax DNA during transcription, topoisomerase enzymes introduce DNA breaks that can also endanger genome integrity. Stabilization of topoisomerases on chromatin by various anticancer drugs or by DNA alterations, can interfere with transcription machinery and cause permanent DNA breaks and R-loops. Here, we review the role of transcription in mediating DNA breaks, and discuss how deregulation of topoisomerase activity can impact on transcription and DNA break formation, and its connection with cancer.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| | - Mathéa Géraud
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| |
Collapse
|
7
|
Saha S, Sun Y, Huang SYN, Baechler SA, Pongor LS, Agama K, Jo U, Zhang H, Tse-Dinh YC, Pommier Y. DNA and RNA Cleavage Complexes and Repair Pathway for TOP3B RNA- and DNA-Protein Crosslinks. Cell Rep 2020; 33:108569. [PMID: 33378676 PMCID: PMC7859927 DOI: 10.1016/j.celrep.2020.108569] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
The present study demonstrates that topoisomerase 3B (TOP3B) forms both RNA and DNA cleavage complexes (TOP3Bccs) in vivo and reveals a pathway for repairing TOP3Bccs. For inducing and detecting cellular TOP3Bccs, we engineer a “self-trapping” mutant of TOP3B (R338W-TOP3B). Transfection with R338W-TOP3B induces R-loops, genomic damage, and growth defect, which highlights the importance of TOP3Bcc repair mechanisms. To determine how cells repair TOP3Bccs, we deplete tyrosyl-DNA phosphodiesterases (TDP1 and TDP2). TDP2-deficient cells show elevated TOP3Bccs both in DNA and RNA. Conversely, overexpression of TDP2 lowers cellular TOP3Bccs. Using recombinant human TDP2, we demonstrate that TDP2 can process both denatured and proteolyzed TOP3Bccs. We also show that cellular TOP3Bccs are ubiquitinated by the E3 ligase TRIM41 before undergoing proteasomal processing and excision by TDP2. Saha et al. introduce an approach to generate and detect the catalytic intermediates of TOP3B in DNA and RNA by engineering a self-poisoning enzyme, R338W-TOP3B. They reveal the cellular consequences of abortive TOP3Bcc formation and a repair pathway involving TRIM41, the proteasome, and TDP2 for processing of TOP3Bcc.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lorinc Sandor Pongor
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Hou G, Deng J, You X, Chen J, Jiang Y, Qian T, Bi Y, Song B, Xu Y, Yang X. Mining topoisomerase isoforms in gastric cancer. Gene 2020; 754:144859. [PMID: 32535049 DOI: 10.1016/j.gene.2020.144859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 01/04/2023]
Abstract
DNA topoisomerases essentially remove topological strains generated during DNA replication, transcription, DNA repair, and other cytogenetic processes. However, distinct expression level and prognostic significance of individual topoisomerase isoforms in gastric cancer (GC) remain largely unexplored. In this study, we utilized Oncomine and Kaplan-Meier plotter database to detect the mRNA expression level of individual topoisomerase isoforms as well as assess their prognostic significance in GC patients. With the exception of TOP3B and TOP2B, levels of all topoisomerase isoforms were found to be elevated in GC patients when compared to the normal tissues. Elevated expression of TOP1 and TOP1MT was relevant to longer overall survival (OS) in GC and gastric intestinal type adenocarcinoma (GITA) patients, but not in diffuse gastric adenocarcinoma (DFA) patients. Increased expression of TOP2A and TOP2B was related to better OS in GC, as well as in GITA and DFA patients. In contrast, increased expression TOP3A and TOP3B was associated with shorter OS in GC, as well as in GITA and DFA patients. We also applied the Tumor IMmune Estimation Resource (TIMER) tool to assess the correlations between distinct topoisomerase isoforms and the infiltrating immune cell landscape. Furthermore, we found that down-regulating the expression of TOP3A by shRNA significantly inhibited the proliferation and colony formation in GC cells compared to control shRNA treated cells. Thus our study lays the framework for utilizing topoisomerases in better understanding the complexity and heterogeneity of GC and for developing strategies for novel customized therapy in GC patients.
Collapse
Affiliation(s)
- Guoxin Hou
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jingjing Deng
- Department of Respiratory, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xin You
- The First Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Chen
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yiming Jiang
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Tingting Qian
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yanyu Bi
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binbin Song
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xinmei Yang
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
9
|
N-Acetylglucosaminyltransferase III (GnT-III) but not N-Acetylgalactosaminyltransferase-6 and 8 are Differentially Expressed in Invasive and In Situ Ductal Carcinoma of the Breast. Pathol Oncol Res 2019; 25:759-768. [PMID: 30689164 DOI: 10.1007/s12253-019-00593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
Mammary carcinoma is the most common malignant tumor in women, and it is the leading cause of mortality. In tumor context, glycosylation promotes post translational modifications necessary for cell progression, emerging as a relevant tumor hallmarker. This study aimed to analyze the association between polypeptide N-acetylgalactosaminyltransferase-6 (ppGalNAc-T6), -T8, N-acetylglucosaminyltransferase III (GnT-III) expression, Phaseolus vulgaris-leucoagglutinin (PHA-L), wheat germ agglutinin (WGA) and peanut agglutinin (PNA) staining with clinic-histopathological factors from patients with pure ductal carcinoma in situ (DCIS) and DCIS with invasive ductal carcinoma (DCIS-IDC) of breast. Formalin-fixed and paraffin-embedded samples (n = 109) were analyzed. In pure DCIS samples GnT-III was over-expressed in comedo lesions (p = 0.007). In DCIS-IDC, GnT-III expression was associated with high nuclear grade tumors (p = 0.039) while the presence of PHA-L and WGA were inversely related to HER-2 expression (p = 0.001; p = 0.036, respectively). These findings pointed to possible involvement of GnT-III, ppGalNAc-T8, L-PHA and WGA as probes in prognostic evaluation of DCIS.
Collapse
|
10
|
Hou GX, Liu P, Yang J, Wen S. Mining expression and prognosis of topoisomerase isoforms in non-small-cell lung cancer by using Oncomine and Kaplan-Meier plotter. PLoS One 2017; 12:e0174515. [PMID: 28355294 PMCID: PMC5371362 DOI: 10.1371/journal.pone.0174515] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/10/2017] [Indexed: 01/09/2023] Open
Abstract
DNA topoisomerases are essential to modulate DNA topology during various cellular genetic processes. The expression and distinct prognostic value of topoisomerase isoforms in non-small-cell lung cancer (NSCLC) is not well established. In the current study, we have examined the mRNA expression of topoisomerase isoforms by using Oncomine analysis and investigated their prognostic value via the Kaplan–Meier plotter database in NSCLC patients. Our analysis indicated that the expression level of topoisomerases in lung cancer was higher compared with normal tissues. Especially, high expression of two topoisomerase isoforms, TOP2A and TOP3A, was found to be correlated to worse overall survival (OS) in all NSCLC and lung adenocarcinoma (Ade) patients, but not in lung squamous cell carcinoma (SCC) patients. In a contrast, high expression of isoforms TOP1 and TOP2B indicated better OS in all NSCLC and Ade, but not in SCC patients. Meanwhile, high expression of TOP1MT and TOP3B was not correlated with OS in NSCLC patients. Furthermore, we also demonstrated a relationship between topoisomerase isoforms and the clinicopathological features for the NSCLC patients, such as grades, clinical stages, lymph node status, smoking status, gender, chemotherapy and radiotherapy. These results support that TOP2A and TOP3A are associated with worse prognosis in NSCLC patients. In addition, our study also shows that TOP1 and TOP2B contribute to favorable prognosis in NSCLC patients. The exact prognostic significance of TOP1MT and TOP3B need to be further elucidated. Comprehensive evaluation of expression and prognosis of topoisomerase isoforms will be a benefit for the better understanding of heterogeneity and complexity in the molecular biology of NSCLC, paving a way for more accurate prediction of prognosis and discovery of potential drug targets for NSCLC patients.
Collapse
Affiliation(s)
- Guo-Xin Hou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Panpan Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
11
|
Bai Y, Li LD, Li J, Lu X. Targeting of topoisomerases for prognosis and drug resistance in ovarian cancer. J Ovarian Res 2016; 9:35. [PMID: 27315793 PMCID: PMC4912764 DOI: 10.1186/s13048-016-0244-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
Backgroud As magicians of the DNA world, topoisomerases resolve all of the topological problems in relation to DNA during a variety of genetic processes. While the prognostic value of topoisomerase isoenzymes in epithelial ovarian carcinoma (EOC) is still elusive. In current study, we investigated the prognostic value of topoisomerase isoenzymes in the EOC patients. Kaplan Meier plotter (KM plotter) database were used to assess the relevance of individual topoisomerase isoenzyme mRNA expression to EOC patients overall survival (OS), in which updated survival information and gene expression data were from a total of 1,648 EOC patients. Results High expression of TOP1 and TOP2A were found to be correlated to worse OS in all patients and serous patients, but not in endometrioid patients. Contrary to TOP1 and TOP2A, TOP3A and TOP3B expression were associated with better OS in all patients and serous patients, but not in endometrioid patients. While TOP2B were not found any significant prognostic value for EOC patients. From the Oncomine database, we also found widespread upregulation in the expression of TOP1 and TOP2A genes in primary tumor tissues. Albeit limited in number, all datasets exhibiting differential expression showed TOP3A and TOP3B under-regulated. Conclusion These results strongly supported that TOP1 and TOP2A were potential biomarkers for predicting poor survival of EOC patients, while TOP3A and TOP3B were expected to be further exploited as tumor suppressors. Comprehensive understanding of the topoisomerase isoforms may have guiding significance for the diagnosis treatment and prognosis in EOC patients. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0244-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Bai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Liang-Dong Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200030, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jun Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China. .,Permanent address: Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, No.419, Fangxie Road, Shanghai, 200011, China.
| |
Collapse
|
12
|
Burdelski C, Strauss C, Tsourlakis MC, Kluth M, Hube-Magg C, Melling N, Lebok P, Minner S, Koop C, Graefen M, Heinzer H, Wittmer C, Krech T, Sauter G, Wilczak W, Simon R, Schlomm T, Steurer S. Overexpression of thymidylate synthase (TYMS) is associated with aggressive tumor features and early PSA recurrence in prostate cancer. Oncotarget 2016; 6:8377-87. [PMID: 25762627 PMCID: PMC4480759 DOI: 10.18632/oncotarget.3107] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/08/2015] [Indexed: 12/17/2022] Open
Abstract
Thymidylate synthase (TYMS) plays a role in DNA synthesis and is a target for 5-fluorouracil. In this study TYMS was analyzed by immunohistochemistry on a tissue microarray containing 11,152 prostate cancers. TYMS expression was higher in neoplastic than in normal prostate epithelium and was detectable in 72.9% of 10,223 interpretable cancers. It was considered strong in 21.9%, moderate in 33.4% and weak in 17.6% of tumors. TYMS overexpression was associated with deletions at 5q21 (p < 0.0001), 6q15 (p < 0.0001) and 3p13 (p = 0.0083) and gradually increased with the total number of these deletions present in the respective cancer sample (p < 0.0001). TYMS expression was unrelated to PTEN deletions (p = 0.9535) but tightly linked to high Gleason grade, advanced pathological tumor stage and early PSA recurrence (p < 0.0001). The prognostic value of TYMS was independent from the ERG status and deletions at 3p13, 5q21, and 6q15. In multivariate analyses the prognostic role of TYMS expression was independent of Gleason grade, pT stage, preoperative PSA, pN stage, or resection margins. TYMS expression analysis might result in clinically useful information in prostate cancer. The striking link to some but not all chromosomal aberrations might suggest a mechanistical link with specific types of DNA damage.
Collapse
Affiliation(s)
- Christoph Burdelski
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Christian Strauss
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Nathaniel Melling
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christina Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany.,Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
13
|
Zhong GX, Wang P, Fu FH, Weng SH, Chen W, Li SG, Liu AL, Wu ZY, Zhu X, Lin XH, Lin JH, Xia XH. Electrochemical immunosensor for detection of topoisomerase based on graphene–gold nanocomposites. Talanta 2014; 125:439-45. [DOI: 10.1016/j.talanta.2014.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/01/2022]
|
14
|
Chen SH, Chan NL, Hsieh TS. New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 2013; 82:139-70. [PMID: 23495937 DOI: 10.1146/annurev-biochem-061809-100002] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA topoisomerases are nature's tools for resolving the unique problems of DNA entanglement that occur owing to unwinding and rewinding of the DNA helix during replication, transcription, recombination, repair, and chromatin remodeling. These enzymes perform topological transformations by providing a transient DNA break, formed by a covalent adduct with the enzyme, through which strand passage can occur. The active site tyrosine is responsible for initiating two transesterifications to cleave and then religate the DNA backbone. The cleavage reaction intermediate is exploited by cytotoxic agents, which have important applications as antibiotics and anticancer drugs. The reactions mediated by these enzymes can also be regulated by their binding partners; one example is a DNA helicase capable of modulating the directionality of strand passage, enabling important functions like reannealing denatured DNA and resolving recombination intermediates. In this review, we cover recent advances in mechanistic insights into topoisomerases and their various cellular functions.
Collapse
Affiliation(s)
- Stefanie Hartman Chen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
15
|
dos Santos PB, Zanetti JS, Ribeiro-Silva A, Beltrão EIC. Beta 1 integrin predicts survival in breast cancer: a clinicopathological and immunohistochemical study. Diagn Pathol 2012; 7:104. [PMID: 22894137 PMCID: PMC3523034 DOI: 10.1186/1746-1596-7-104] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/10/2012] [Indexed: 01/16/2023] Open
Abstract
Background The main focus of several studies concerned with cancer progression and metastasis is to analyze the mechanisms that allow cancer cells to interact and quickly adapt with their environment. Integrins, a family of transmembrane glycoproteins, play a major role in invasive and metastatic processes. Integrins are involved in cell adhesion in both cell-extracellular matrix and cell-cell interactions, and particularly, β1 integrin is involved in proliferation and differentiation of cells in the development of epithelial tissues. This work aimed to investigate the putative role of β1 integrin expression on survival and metastasis in patients with breast invasive ductal carcinoma (IDC). In addition, we compared the expression of β1 integrin in patients with ductal carcinoma in situ (DCIS). Methods Through tissue microarray (TMA) slides containing 225 samples of IDC and 67 samples of DCIS, β1 integrin expression was related with several immunohistochemical markers and clinicopathologic features of prognostic significance. Results β1 integrin was overexpressed in 32.8% of IDC. In IDC, β1 integrin was related with HER-2 (p = 0.019) and VEGF (p = 0.011) expression and it had a significant relationship with metastasis and death (p = 0.001 and p = 0.05, respectively). Kaplan-Meier survival analysis showed that the overexpression of this protein is very significant (p = 0.002) in specific survival (number of months between diagnosis and death caused by the disease). There were no correlation between IDC and DCIS (p = 0.559) regarding β1 integrin expression. Conclusions Considering that the expression of β1 integrin in breast cancer remains controversial, specially its relation with survival of patients, our findings provide further evidence that β1 integrin can be a marker of poor prognosis in breast cancer. Virtual slides The virtual slide(s) for this article can be found here:
http://www.diagnosticpathology.diagnomx.eu/vs/6652215267393871
Collapse
Affiliation(s)
- Petra Barros dos Santos
- Department of Pathology, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Avenida Professor Moraes Rêgo S/N, 50670-901, Recife, Pernambuco, Brazil.
| | | | | | | |
Collapse
|
16
|
Oliveira-Costa JP, Oliveira LR, da Silveira GG, Soave DF, Soares FA, Ribeiro-Silva A. Topoisomerase expression in oral squamous cell carcinoma: relationship with cancer stem cells profiles and lymph node metastasis. J Oral Pathol Med 2012; 41:762-8. [DOI: 10.1111/j.1600-0714.2012.01174.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
The role of tumor hypoxia in MUC1-positive breast carcinomas. Virchows Arch 2011; 459:367-75. [PMID: 21892751 DOI: 10.1007/s00428-011-1142-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/01/2011] [Accepted: 08/18/2011] [Indexed: 12/23/2022]
Abstract
Mucin 1 (MUC1) is a glycoprotein that is expressed on apical cell membranes in a variety of normal tissues. MUC1 is involved in cell signaling, inhibition of cell-cell and cell matrix adhesion, apoptosis, proliferation, and transcription. Hypoxia is an important factor that promotes cancer metastasis and stimulates angiogenesis and tumor progression. Hypoxia inducible factor 1 (HIF-1α) and carbonic anhydrase IX (CAIX) are two molecules that are involved in this process. The role of hypoxia in MUC1+ invasive ductal breast carcinomas is not well established. In this study, the expression of MUC1 was correlated with the hypoxia-associated markers HIF-1α and CAIX, as well as several immunohistochemical markers and clinicopathologic features of prognostic significance in 243 invasive ductal carcinomas. MUC1 was overexpressed in 37.0% of patients and correlated with the expression of estrogen receptor (p = 0.0001), progesterone receptor (p = 0.0001), HIF-1α (p = 0.006), VEGF (p = 0.024), and p53 (p = 0.025). In breast cancer, MUC1 expression has been associated with increased degradation of inhibitor of NF-κB (IκBα), driving NF-κB to the nucleus and blocking apoptosis and promoting cell survival. We analyzed NF-κB expression in MUC1+ breast carcinoma and found a very significant relationship between these proteins (p = 0.0001). Our findings indicate that MUC1 may play a role in the regulation of hormone receptors by increasing the inactivation of p53 and targeting NF-κB to the nucleus. Our data also support the notion that activation of HIF-1α in MUC1+ breast carcinomas may modulate VEGF expression, allowing a metabolic adaptation to hypoxia.
Collapse
|