1
|
Mucosal permeability and mast cells as targets for functional gastrointestinal disorders. Curr Opin Pharmacol 2018; 43:66-71. [PMID: 30216901 DOI: 10.1016/j.coph.2018.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 02/08/2023]
Abstract
The intestinal mucosa is constantly exposed to harmful luminal content, and uptake is closely controlled and regulated by neuro-immune factors. If control is broken, it might lead to ongoing enhanced mucosal permeability, potentially resulting in functional gastrointestinal disorders. The importance of mast cells in the regulation of the mucosal barrier has become obvious, and increased numbers and more activated mast cells have been observed in irritable bowel syndrome, functional dyspepsia and gastroesophageal reflux disease. To target the disturbed mucosal permeability, directly or via mast cells, is therefore currently of major interest. For example, administration of mast cell stabilizers and probiotics have shown promising effects in patients with functional gastrointestinal disorders.
Collapse
|
2
|
Kamekura R, Kolegraff KN, Nava P, Hilgarth RS, Feng M, Parkos CA, Nusrat A. Loss of the desmosomal cadherin desmoglein-2 suppresses colon cancer cell proliferation through EGFR signaling. Oncogene 2013; 33:4531-6. [PMID: 24166502 DOI: 10.1038/onc.2013.442] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
Desmosomal cadherins mediate cell-cell adhesion in epithelial tissues and have been known to be altered in cancer. We have previously shown that one of the two intestinal epithelial desmosomal cadherins, desmocollin-2 (Dsc2) loss promotes colonic epithelial carcinoma cell proliferation and tumor formation. In this study we show that loss of the other intestinal desmosomal cadherin, desmoglein-2 (Dsg2) that pairs with Dsc2, results in decreased epithelial cell proliferation and suppressed xenograft tumor growth in mice. Dsg2-deficient cells demonstrated a compensatory increase in Dsc2 expression, and small interfering RNA-mediated loss of Dsc2 restored proliferation in Dsg2-deficient cells. Dsg2 downregulation inhibited epidermal growth factor receptor (EGFR) signaling and cell proliferation through altered phosphorylation of EGFR and downstream extracellular signal-regulated kinase activation in parallel with inhibited EGFR receptor internalization. Additionally, we demonstrated a central role of Dsc2 in controlling EGFR signaling and cell proliferation in intestinal epithelial cells. Consistent with these findings, analyses of human colon cancers demonstrated increased Dsg2 protein expression. Taken together, these data demonstrate that partner desmosomal cadherins Dsg2 and Dsc2 play opposing roles in controlling colonic carcinoma cell proliferation through differential effects on EGFR signaling.
Collapse
Affiliation(s)
- R Kamekura
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - K N Kolegraff
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - P Nava
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Mexico DF, Mexico
| | - R S Hilgarth
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - M Feng
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - C A Parkos
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - A Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Appelman HD, Streutker C, Vieth M, Neumann H, Neurath MF, Upton MP, Sagaert X, Wang HH, El-Zimaity H, Abraham SC, Bellizzi AM. The esophageal mucosa and submucosa: immunohistology in GERD and Barrett's esophagus. Ann N Y Acad Sci 2013; 1300:144-165. [DOI: 10.1111/nyas.12241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Michael Vieth
- Department of Medicine; University of Erlangen-Nuremberg; Erlangen Germany
| | - Helmut Neumann
- Department of Medicine; University of Erlangen-Nuremberg; Erlangen Germany
| | - Markus F. Neurath
- Department of Medicine; University of Erlangen-Nuremberg; Erlangen Germany
| | - Melissa P. Upton
- Department of Pathology; University of Washington, Seattle; Washington
| | - Xavier Sagaert
- Department of Pathology; Department of Imaging & Pathology; KU Leuven; Leuven Belgium
| | - Helen H. Wang
- Department of Pathology; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston Massachusetts
| | | | - Susan C. Abraham
- Department of Pathology; University of Texas M. D. Anderson Cancer Center; Houston Texas
| | - Andrew M. Bellizzi
- Department of Pathology; University of Iowa Hospitals and Clinics; University of Iowa Carver College of Medicine; Iowa City Iowa
| |
Collapse
|