1
|
Gorunova L, Boye K, Panagopoulos I, Berner JM, Bjerkehagen B, Hompland I, Lobmaier I, Hølmebakk T, Hveem TS, Heim S, Micci F. Cytogenetic and molecular analyses of 291 gastrointestinal stromal tumors: site-specific cytogenetic evolution as evidence of pathogenetic heterogeneity. Oncotarget 2022; 13:508-517. [PMID: 35284037 PMCID: PMC8901076 DOI: 10.18632/oncotarget.28209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm with variable behavior. An increased understanding of the tumor pathogenesis may improve clinical decision-making. Our aim was to obtain more data about the overall chromosome aberrations and intratumor cytogenetic heterogeneity in GIST. We analyzed 306 GIST samples from 291 patients using G-banding, direct sequencing, and statistics. Clonal chromosome aberrations were found in 81% of samples, with 34% of 226 primary tumors demonstrating extensive cytogenetic heterogeneity. 135 tumors had simple (≤5 changes) and 91 had complex (>5 changes) karyotypes. The karyotypically complex tumors more often were non-gastric (P < 0.001), larger (P < 0.001), more mitotically active (P = 0.009) and had a higher risk of rupture (P < 0.001) and recurrence (P < 0.001). Significant differences between gastric and non-gastric tumors were found also in the frequency of main chromosome losses: of 14q (79% vs. 63%), 22q (38% vs. 67%), 1p (23% vs. 88%), and 15q (18% vs. 77%). Gastric PDGFRA-mutated tumors, compared with gastric KIT-mutated, had a lower incidence of 22q losses (18% vs. 43%) but a higher rate of 1p losses (42% vs. 22%). The present, largest by far karyotypic study of GISTs provides further evidence for the existence of variable pathogenetic pathways operating in these tumors’ development.
Collapse
Affiliation(s)
- Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjetil Boye
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jeanne-Marie Berner
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Ivar Hompland
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Toto Hølmebakk
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Tarjei S. Hveem
- Section for Applied Informatics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Abstract
The classification "gastrointestinal stromal tumor" (GIST) became commonplace in the 1990s and since that time various advances have characterized the GIST lineage of origin, tyrosine kinase mutations, and mechanisms of response and resistance to targeted therapies. In addition to tyrosine kinase mutations and their constitutive activation of downstream signaling pathways, GISTs acquire a sequence of chromosomal aberrations. These include deletions of chromosomes 14q, 22q, 1p, and 15q, which harbor putative tumor suppressor genes required for stepwise progression from microscopic, preclinical forms of GIST (microGIST) to clinically relevant tumors with malignant potential. Recent advances extend our understanding of GIST biology beyond that of the oncogenic KIT/PDGFRA tyrosine kinases and beyond mechanisms of KIT/PDGFRA-inhibitor treatment response and resistance. These advances have characterized ETV1 as an essential interstitial cell of Cajal-GIST transcription factor in oncogenic KIT signaling pathways, and have characterized the biologically distinct subgroup of succinate dehydrogenase deficient GIST, which are particularly common in young adults. Also, recent discoveries of MAX and dystrophin genomic inactivation have expanded our understanding of GIST development and progression, showing that MAX inactivation is an early event fostering cell cycle activity, whereas dystrophin inactivation promotes invasion and metastasis.
Collapse
|
4
|
Schaefer IM, Wang Y, Liang CW, Bahri N, Quattrone A, Doyle L, Mariño-Enríquez A, Lauria A, Zhu M, Debiec-Rychter M, Grunewald S, Hechtman JF, Dufresne A, Antonescu CR, Beadling C, Sicinska ET, van de Rijn M, Demetri GD, Ladanyi M, Corless CL, Heinrich MC, Raut CP, Bauer S, Fletcher JA. MAX inactivation is an early event in GIST development that regulates p16 and cell proliferation. Nat Commun 2017; 8:14674. [PMID: 28270683 PMCID: PMC5344969 DOI: 10.1038/ncomms14674] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
KIT, PDGFRA, NF1 and SDH mutations are alternate initiating events, fostering hyperplasia in gastrointestinal stromal tumours (GISTs), and additional genetic alterations are required for progression to malignancy. The most frequent secondary alteration, demonstrated in ∼70% of GISTs, is chromosome 14q deletion. Here we report hemizygous or homozygous inactivating mutations of the chromosome 14q MAX gene in 16 of 76 GISTs (21%). We find MAX mutations in 17% and 50% of sporadic and NF1-syndromic GISTs, respectively, and we find loss of MAX protein expression in 48% and 90% of sporadic and NF1-syndromic GISTs, respectively, and in three of eight micro-GISTs, which are early GISTs. MAX genomic inactivation is associated with p16 silencing in the absence of p16 coding sequence deletion and MAX induction restores p16 expression and inhibits GIST proliferation. Hence, MAX inactivation is a common event in GIST progression, fostering cell cycle activity in early GISTs. In gastrointestinal stromal tumours early mutations in known genes are frequently followed by chromosome 14q deletion. Here the authors find mutations resulting in loss of MAX protein expression conserved between primary tumours and metastases in the same patients, suggesting that MAX mutation is an early event.
Collapse
Affiliation(s)
- Inga-Marie Schaefer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Yuexiang Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Cher-Wei Liang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Nacef Bahri
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Anna Quattrone
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA.,Department of Human Genetics, KU Leuven and University Hospitals Leuven, Herestraat 49, Box 602, B-3000 Leuven, Belgium
| | - Leona Doyle
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Adrian Mariño-Enríquez
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Alexandra Lauria
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Meijun Zhu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Herestraat 49, Box 602, B-3000 Leuven, Belgium
| | - Susanne Grunewald
- Sarcoma Center, Western German Cancer Center, University of Duisburg-Essen Medical School, Hufelandstrasse 55, 45122 Essen, Germany
| | - Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Armelle Dufresne
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Carol Beadling
- Department of Pathology, Knight Cancer Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - Ewa T Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Matt van de Rijn
- Department of Pathology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, California 94305, USA
| | - George D Demetri
- Ludwig Center at Harvard, Harvard Medical School and Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Christopher L Corless
- Department of Pathology, Knight Cancer Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - Michael C Heinrich
- Portland VA Health Care System, Knight Cancer Institute, Oregon Health and Science University, 3181 Soutwest Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Sebastian Bauer
- Sarcoma Center, Western German Cancer Center, University of Duisburg-Essen Medical School, Hufelandstrasse 55, 45122 Essen, Germany
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Zhang R, Zhao J, Xu J, Liu F, Xu Y, Bu X, Dai C, Song C. Genetic variations in the TERT and CLPTM1L gene region and gastrointestinal stromal tumors risk. Oncotarget 2016; 6:31360-7. [PMID: 26372813 PMCID: PMC4741611 DOI: 10.18632/oncotarget.5153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/27/2015] [Indexed: 12/03/2022] Open
Abstract
Recent studies have suggested polymorphisms in the TERT and CLPTM1L region are associated with carcinogenesis of many distinct cancer types, including gastrointestinal cancers. However, the contribution of polymorphisms in the TERT and CLPTM1L gene region to gastrointestinal stromal tumors (GISTs) risk is still unknown. We tested the six tagSNPs on TERT and CLPTM1L region with GIST risk, using a population-based, two-stage, case-control study in 2,000 subjects. Functional validation was conducted to validate our findings of TERT rs2736098 and explore its influence on relative telomere length (RTL) in GIST cells. It showed that variant rs2736098 was significantly associated with increased risk of GIST (per allele OR = 1.29, 95% CI: 1.14–1.47, P = 7.03 × 10−5). The difference remain significant after Bonferroni correction (P = 7.03 × 10−5 * 6 = 4.2 × 10−4). Real-time PCR showed carriers of genotype CC have the longest RTL, following by carriers of genotype CT, while carriers of genotype TT have the shortest RTL in GIST tissues (P < 0.001). Our data provide evidence to implicate TERT rs2736098 polymorphism as a novel susceptibility factor for GIST risk.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning Province, P.R. China
| | - Jian Zhao
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning Province, P.R. China
| | - Jian Xu
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning Province, P.R. China
| | - Fang Liu
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning Province, P.R. China
| | - Yongqing Xu
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, P.R. China
| | - Xianmin Bu
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, P.R. China
| | - Chaoliu Dai
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, P.R. China
| | - Chun Song
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning Province, P.R. China
| |
Collapse
|