1
|
Aktar S, Islam F, Cheng T, Gamage SMK, Choudhury IN, Islam MS, Lu CT, Hamid FB, Ishida H, Abe I, Xie N, Gopalan V, Lam AK. Correlation between KRAS Mutation and CTLA-4 mRNA Expression in Circulating Tumour Cells: Clinical Implications in Colorectal Cancer. Genes (Basel) 2023; 14:1808. [PMID: 37761948 PMCID: PMC10530465 DOI: 10.3390/genes14091808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Combination strategies of KRAS inhibition with immunotherapy in treating advanced or recurrent colorectal carcinoma (CRC) may need to be assessed in circulating tumour cells (CTCs) to achieve better clinical outcomes. This study aimed to investigate the genomic variations of KRAS in CTCs and matched CRC tissues and compared mRNA expression of KRAS and CTLA-4 between wild-type and KRAS-mutated CTCs and CRC tissues. Clinicopathological correlations were also compared. Six known mutations of KRAS were identified at both codon 12 and codon 13 (c.35G>T/G12V, c.35G>A7/G12D, c.35G>C/G12A, c.34G>A/G12S, c.38G>C/G13A, and c.38G>A/G13D). Three CTC samples harboured the identified mutations (16.7%; 3/18), while fifteen matched primary tumour tissues (65.2%, 15/23) showed the mutations. CTCs harbouring the KRAS variant were different from matched CRC tissue. All the mutations were heterozygous. Though insignificant, CTLA-4 mRNA expression was higher in patients carrying KRAS mutations. Patients harbouring KRAS mutations in CTCs were more likely to have poorly differentiated tumours (p = 0.039) and with lymph node metastasis (p = 0.027) and perineural invasion (p = 0.014). KRAS mutations in CTCs were also significantly correlated with overall pathological stages (p = 0.027). These findings imply the genetic basis of KRAS with immunotherapeutic target molecules based on a real-time platform. This study also suggests the highly heterogeneous nature of cancer cells, which may facilitate the assessment of clonal dynamics across a single patient's disease.
Collapse
Affiliation(s)
- Sharmin Aktar
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Tracie Cheng
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Sujani Madhurika Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Indra Neil Choudhury
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Biochemistry & Biotechnology, University of Barishal, Barishal 8254, Bangladesh
| | - Cu Tai Lu
- Department of Surgery, Gold Coast University Hospital, Gold Coast, QLD 4215, Australia;
| | - Faysal Bin Hamid
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Hirotaka Ishida
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
| | - Ichiro Abe
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
| | - Nan Xie
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Alfred K. Lam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (S.A.); (T.C.); (S.M.K.G.); (M.S.I.); (F.B.H.); (H.I.); (I.A.); (N.X.)
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- Pathology Queensland, Gold Coast University Hospital, Southport, QLD 4215, Australia
| |
Collapse
|
3
|
Cheng T, Chaousis S, Kodagoda Gamage SM, Lam AKY, Gopalan V. Polycyclic Aromatic Hydrocarbons Detected in Processed Meats Cause Genetic Changes in Colorectal Cancers. Int J Mol Sci 2021; 22:10959. [PMID: 34681617 PMCID: PMC8537007 DOI: 10.3390/ijms222010959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are commonly ingested via meat and are produced from high-temperature cooking of meat. Some of these PAHs have potential roles in carcinogenesis of colorectal cancer (CRC). We aimed to investigate PAH concentrations in eight types of commonly consumed ready-to-eat meat samples and their potential effects on gene expressions related to CRC. Extraction and clean-up of meat samples were performed using QuEChERS method, and PAHs were detected using GC-MS. Nine different PAHs were found in meat samples. Interestingly, roast turkey contained the highest total PAH content, followed by salami meat. Hams of varying levels of smokedness showed a proportional increase of phenanthrene (PHEN), anthracene (ANTH), and fluorene (FLU). Triple-smoked ham samples showed significantly higher levels of these PAHs compared to single-smoked ham. These three PAHs plus benzo[a]pyrene (B[a]P), being detected in three meat samples, were chosen as treatments to investigate in vitro gene expression changes in human colon cells. After PAH treatment, total RNA was extracted and rtPCR was performed, investigating gene expression related to CRC. B[a]P decreased mRNA expression of TP53. In addition, at high concentrations, B[a]P significantly increased KRAS expression. Treatments with 1 µM PHEN, 25 µM, and 10 µM FLU significantly increased KRAS mRNA expression in vitro, implying the potential basis for PAH-induced colorectal carcinogenesis. Opposingly, the ANTH treatment led to increased TP53 and APC expression and decreased KRAS expression, suggesting an anti-carcinogenic effect. To conclude, PAHs are common in ready-to-eat meat samples and are capable of significantly modifying the expression of key genes related to CRC.
Collapse
Affiliation(s)
- Tracie Cheng
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Stephanie Chaousis
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Sujani Madhurika Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Kandy 20404, Sri Lanka
| | - Alfred King-yin Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| |
Collapse
|