1
|
Wang Y, Teramoto Y, Miyamoto H. Cribriform intraductal carcinoma of the prostate may be more aggressive than cribriform conventional/acinar prostatic adenocarcinoma. Pathology 2025; 57:3-9. [PMID: 39592308 DOI: 10.1016/j.pathol.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 11/28/2024]
Abstract
It remains to be determined if the prognostic value of cribriform morphology (Crib) associated with intraductal carcinoma of the prostate (IDC) is equivalent to that in conventional/acinar prostatic adenocarcinoma (CPA). We herein assessed radical prostatectomy findings and long-term oncologic outcomes in 732 men with Grade Group 2-4 CPA without any Gleason pattern 5. Our cases were divided into four cohorts according to the absence or presence of Crib within CPA and/or IDC: Cohort-1, no Crib (n=347; 47.4%); Cohort-2, Crib only in CPA (n=203; 27.7%); Cohort-3, Crib only in IDC (n=17; 2.3%); and Cohort-4, Crib in both CPA and IDC (n=165; 22.5%). Compared with that in CPA only (Cohort-2), Crib in both CPA and IDC (Cohort-4) was significantly associated with adverse histopathological features, including higher tumour grade/stage and larger tumour volume. Univariate analysis revealed significantly higher risks of postoperative recurrence in patients with Crib in IDC only [Cohort-3; hazard ratio (HR) 2.450, p=0.022] or both CPA and IDC (Cohort-4; HR 2.835, p<0.001) than in those with Crib in CPA only (Cohort-2), whereas the prognosis was analogous between Cohort-3 and Cohort-4 (p=0.913). In a multivariable analysis [Crib in CPA only (Cohort-2) as a reference], Crib in IDC only (Cohort-3; HR 3.821, p=0.002) or both CPA and IDC (Cohort-4; HR 1.905, p=0.004) showed significantly worse recurrence-free survival. Compared with Crib in CPA only, its presence in both CPA and IDC was thus found to be independently associated with a poorer prognosis, suggesting a potentially greater clinical impact of Crib in IDC than in CPA.
Collapse
MESH Headings
- Humans
- Male
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/surgery
- Aged
- Middle Aged
- Prostatectomy
- Prognosis
- Adenocarcinoma/pathology
- Adenocarcinoma/surgery
- Neoplasm Grading
- Carcinoma, Acinar Cell/pathology
- Carcinoma, Acinar Cell/surgery
- Prostate/pathology
- Prostate/surgery
- Neoplasm Recurrence, Local/pathology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/surgery
- Carcinoma, Ductal/pathology
- Carcinoma, Ductal/surgery
- Carcinoma, Ductal/mortality
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Urology, University of Rochester Medical Center, Rochester, NY, USA; James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Nguyen JK, Harik LR, Klein EA, Li J, Corrigan D, Liu S, Chan E, Hawley S, Auman H, Newcomb LF, Carroll PR, Cooperberg MR, Filson CP, Simko JP, Nelson PS, Tretiakova MS, Troyer D, True LD, Vakar-Lopez F, Weight CJ, Lin DW, Brooks JD, McKenney JK. Proposal for an optimised definition of adverse pathology (unfavourable histology) that predicts metastatic risk in prostatic adenocarcinoma independent of grade group and pathological stage. Histopathology 2024; 85:598-613. [PMID: 38828674 PMCID: PMC11365761 DOI: 10.1111/his.15231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
AIMS Histological grading of prostate cancer is a powerful prognostic tool, but current criteria for grade assignment are not fully optimised. Our goal was to develop and test a simplified histological grading model, based heavily on large cribriform/intraductal carcinoma, with optimised sensitivity for predicting metastatic potential. METHODS AND RESULTS Two separate non-overlapping cohorts were identified: a 419-patient post-radical prostatectomy cohort with long term clinical follow-up and a 209-patient post-radical prostatectomy cohort in which all patients had pathologically confirmed metastatic disease. All prostatectomies were re-reviewed for high-risk histological patterns of carcinoma termed 'unfavourable histology'. Unfavourable histology is defined by any classic Gleason pattern 5 component, any large cribriform morphology (> 0.25 mm) or intraductal carcinoma, complex intraluminal papillary architecture, grade 3 stromogenic carcinoma and complex anastomosing cord-like growth. For the outcome cohort, Kaplan-Meier analysis compared biochemical recurrence, metastasis and death between subjects with favourable and unfavourable histology, stratified by pathological stage and grade group. Multivariable Cox proportional hazards models evaluated adding unfavourable histology to the Memorial Sloan Kettering Cancer Center (MSKCC) post-prostatectomy nomogram and stratification by percentage of unfavourable histology. At 15 years unfavourable histology predicted biochemical recurrence, with sensitivity of 93% and specificity of 88%, metastatic disease at 100 and 48% and death at 100 and 46%. Grade group 2 prostate cancers with unfavourable histology were associated with metastasis independent of pathological stage, while those without had no risk. Histological models for prediction of metastasis based on only large cribriform/intraductal carcinoma or increasing diameter of cribriform size improved specificity, but with lower sensitivity. Multivariable Cox proportional hazards models demonstrated that unfavourable histology significantly improved discriminatory power of the MSKCC post-prostatectomy nomogram for biochemical failure (likelihood ratio test P < 0.001). In the retrospective review of a separate RP cohort in which all patients had confirmed metastatic disease, none had unequivocal favourable histology. CONCLUSIONS Unfavourable histology at radical prostatectomy is associated with metastatic risk, predicted adverse outcomes better than current grading and staging systems and improved the MSKCC post-prostatectomy nomogram. Most importantly, unfavourable histology stratified grade group 2 prostate cancers into those with and without metastatic potential, independent of stage. While unfavourable histology is driven predominantly by large cribriform/intraductal carcinoma, the recognition and inclusion of other specific architectural patterns add to the sensitivity for predicting metastatic disease. Moreover, a simplified dichotomous model improves communication and could increase implementation.
Collapse
Affiliation(s)
- Jane K. Nguyen
- Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH
| | - Lara R. Harik
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | - Jianbo Li
- Lerner Research Institute, Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Dillon Corrigan
- Lerner Research Institute, Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Shiguang Liu
- Department of Pathology, University of Florida Health, Jacksonville, FL
| | - Emily Chan
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Sarah Hawley
- Canary Foundation, Palo Alto, CA
- Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Lisa F. Newcomb
- Fred Hutchinson Cancer Center, Seattle, WA
- Department of Urology, University of Washington Medical Center, Seattle, WA
| | - Peter R. Carroll
- Department of Urology, University of California San Francisco, San Francisco, CA
| | | | | | - Jeff P. Simko
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Peter S. Nelson
- Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington Medical Center, Seattle, WA
| | - Maria S. Tretiakova
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA
| | - Dean Troyer
- Department of Pathology, Eastern Virginia Medical School, Norfolk, VA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA
| | - Funda Vakar-Lopez
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA
| | | | - Daniel W Lin
- Fred Hutchinson Cancer Center, Seattle, WA
- Department of Urology, University of Washington Medical Center, Seattle, WA
| | - James D. Brooks
- Department of Urology, Stanford University Medical Center, Stanford, CA
| | - Jesse K. McKenney
- Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
3
|
Ghai S, Klotz L, Pond GR, Kebabdjian M, Downes MR, Belanger EC, Moussa M, van der Kwast TH. Comparison of Multiparametric MRI-targeted and Systematic Biopsies for Detection of Cribriform and Intraductal Carcinoma Prostate Cancer. Radiology 2024; 312:e231948. [PMID: 39012252 DOI: 10.1148/radiol.231948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Background Intraductal carcinoma (IDC) and invasive cribriform (Cr) subtypes of prostate cancer (PCa) are an indication of aggressiveness, but the evidence regarding whether MRI can be used to detect Cr/IDC-pattern PCa is contradictory. Purpose To compare the detection of Cr/IDC-pattern PCa at multiparametric MRI (mpMRI)-targeted biopsy versus systematic biopsy in biopsy-naive men at risk for PCa. Materials and Methods This study was a secondary analysis of a prospective randomized controlled trial that recruited participants with a clinical suspicion of PCa between April 2017 and November 2019 at five centers. Participants were randomized 1:1 to either the MRI arm or the systematic biopsy arm. Targeted biopsy was performed in participants with a Prostate Imaging Reporting and Data System score of at least 3. MRI features were recorded, and biopsy slides and prostatectomy specimens were reviewed for the presence or absence of Cr/IDC histologic patterns. Comparison of Cr/IDC patterns was performed using generalized linear mixed modeling. Results A total of 453 participants were enrolled, with 226 in the systematic biopsy arm (median age, 65 years [IQR, 59-70 years]; 196 biopsies available for assessment) and 227 in the mpMRI-targeted biopsy arm (median age, 67 years [IQR, 60-72 years]; 132 biopsies available for assessment). Identification of Cr/IDC PCa was lower in the systematic biopsy arm compared with the mpMRI arm (31 of 196 biopsies [16%] vs 33 of 132 biopsies [25%]; P = .01). No evidence of a difference in mean cancer core length (CCL) (11.3 mm ± 4.4 vs 9.7 mm ± 4.5; P = .09), apparent diffusion coefficient (685 µm2/sec ± 178 vs 746 µm2/sec ± 245; P = .52), or dynamic contrast-enhanced positivity (27 [82%] vs 37 [90%]; P = .33) for clinically significant PCa (csPCa) was observed between participants with or without Cr/IDC disease in the MRI arm. Cr/IDC-positive histologic patterns overall had a higher mean CCL compared with Cr/IDC-negative csPCa (11.1 mm ± 4.4 vs 9.2 mm ± 4.1; P = .009). Conclusion MRI-targeted biopsy showed increased detection of Cr/IDC histologic patterns compared with systematic biopsy. Clinical trial registration no. NCT02936258 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Scialpi and Martorana in this issue.
Collapse
Affiliation(s)
- Sangeet Ghai
- From the Joint Department of Medical Imaging, University Health Network-Mount Sinai Hospital-Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Ave, 1PMB-292, Toronto, ON, Canada M5G 2N2 (S.G.); Division of Urology (L.K., M.K.) and Division of Anatomic Pathology, Laboratory Medicine & Molecular Diagnostics (M.R.D.), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Biostatistics, McMaster University, Hamilton, Canada (G.R.P.); Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada (E.C.B.); Department of Pathology and Laboratory Medicine, London Health Sciences Centre, University of Western Ontario, London, Canada (M.M.); and Department of Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada (T.H.v.d.K.)
| | - Laurence Klotz
- From the Joint Department of Medical Imaging, University Health Network-Mount Sinai Hospital-Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Ave, 1PMB-292, Toronto, ON, Canada M5G 2N2 (S.G.); Division of Urology (L.K., M.K.) and Division of Anatomic Pathology, Laboratory Medicine & Molecular Diagnostics (M.R.D.), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Biostatistics, McMaster University, Hamilton, Canada (G.R.P.); Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada (E.C.B.); Department of Pathology and Laboratory Medicine, London Health Sciences Centre, University of Western Ontario, London, Canada (M.M.); and Department of Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada (T.H.v.d.K.)
| | - Gregory R Pond
- From the Joint Department of Medical Imaging, University Health Network-Mount Sinai Hospital-Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Ave, 1PMB-292, Toronto, ON, Canada M5G 2N2 (S.G.); Division of Urology (L.K., M.K.) and Division of Anatomic Pathology, Laboratory Medicine & Molecular Diagnostics (M.R.D.), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Biostatistics, McMaster University, Hamilton, Canada (G.R.P.); Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada (E.C.B.); Department of Pathology and Laboratory Medicine, London Health Sciences Centre, University of Western Ontario, London, Canada (M.M.); and Department of Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada (T.H.v.d.K.)
| | - Marlene Kebabdjian
- From the Joint Department of Medical Imaging, University Health Network-Mount Sinai Hospital-Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Ave, 1PMB-292, Toronto, ON, Canada M5G 2N2 (S.G.); Division of Urology (L.K., M.K.) and Division of Anatomic Pathology, Laboratory Medicine & Molecular Diagnostics (M.R.D.), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Biostatistics, McMaster University, Hamilton, Canada (G.R.P.); Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada (E.C.B.); Department of Pathology and Laboratory Medicine, London Health Sciences Centre, University of Western Ontario, London, Canada (M.M.); and Department of Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada (T.H.v.d.K.)
| | - Michelle R Downes
- From the Joint Department of Medical Imaging, University Health Network-Mount Sinai Hospital-Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Ave, 1PMB-292, Toronto, ON, Canada M5G 2N2 (S.G.); Division of Urology (L.K., M.K.) and Division of Anatomic Pathology, Laboratory Medicine & Molecular Diagnostics (M.R.D.), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Biostatistics, McMaster University, Hamilton, Canada (G.R.P.); Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada (E.C.B.); Department of Pathology and Laboratory Medicine, London Health Sciences Centre, University of Western Ontario, London, Canada (M.M.); and Department of Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada (T.H.v.d.K.)
| | - Eric C Belanger
- From the Joint Department of Medical Imaging, University Health Network-Mount Sinai Hospital-Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Ave, 1PMB-292, Toronto, ON, Canada M5G 2N2 (S.G.); Division of Urology (L.K., M.K.) and Division of Anatomic Pathology, Laboratory Medicine & Molecular Diagnostics (M.R.D.), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Biostatistics, McMaster University, Hamilton, Canada (G.R.P.); Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada (E.C.B.); Department of Pathology and Laboratory Medicine, London Health Sciences Centre, University of Western Ontario, London, Canada (M.M.); and Department of Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada (T.H.v.d.K.)
| | - Madeleine Moussa
- From the Joint Department of Medical Imaging, University Health Network-Mount Sinai Hospital-Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Ave, 1PMB-292, Toronto, ON, Canada M5G 2N2 (S.G.); Division of Urology (L.K., M.K.) and Division of Anatomic Pathology, Laboratory Medicine & Molecular Diagnostics (M.R.D.), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Biostatistics, McMaster University, Hamilton, Canada (G.R.P.); Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada (E.C.B.); Department of Pathology and Laboratory Medicine, London Health Sciences Centre, University of Western Ontario, London, Canada (M.M.); and Department of Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada (T.H.v.d.K.)
| | - Theodorus H van der Kwast
- From the Joint Department of Medical Imaging, University Health Network-Mount Sinai Hospital-Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Ave, 1PMB-292, Toronto, ON, Canada M5G 2N2 (S.G.); Division of Urology (L.K., M.K.) and Division of Anatomic Pathology, Laboratory Medicine & Molecular Diagnostics (M.R.D.), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Biostatistics, McMaster University, Hamilton, Canada (G.R.P.); Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada (E.C.B.); Department of Pathology and Laboratory Medicine, London Health Sciences Centre, University of Western Ontario, London, Canada (M.M.); and Department of Pathology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada (T.H.v.d.K.)
| |
Collapse
|
4
|
Sasaki T, Kobayashi I, Uchida K, Higashi S, Masui S, Nishikawa K, Tsuzuki T, Watanabe M, Sassa N, Inoue T. Cribriform pattern 4/intraductal carcinoma of the prostate and persistent prostate-specific antigen after radical prostatectomy. BJUI COMPASS 2024; 5:709-717. [PMID: 39022662 PMCID: PMC11250726 DOI: 10.1002/bco2.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives The objective of this study is to identify the effect of cribriform pattern 4 carcinoma/intraductal carcinoma of the prostate (CC/IDCP) on persistent prostate-specific antigen (PSA) levels after robot-assisted radical prostatectomy (RARP) in patients with localized prostate cancer (PCa). Patients and Methods This retrospective study included 730 consecutive patients with localized PCa who underwent RARP at Mie University (n = 392) and Aichi Medical University (n = 338) between 2015 and 2021. Patients with clinically metastatic PCa (cN1 and cM1) and those who received neoadjuvant and/or adjuvant therapy before biochemical recurrence were excluded. We evaluated the effects of CC/IDCP on persistent PSA levels after RARP. Persistent PSA was defined as PSA level ≥0.2 ng/mL at 1 month postoperatively and consecutively thereafter. Using factors from logistic regression analysis, models were developed to predict persistent PSA levels. Results Approximately 6.3% (n = 46) of the patients had persistent PSA levels. Patients with biopsy CC/IDCP (bCC/IDCP) and pathological CC/IDCP (pCC/IDCP) based on RARP specimens were 11.6% (85/730) and 36.5% (267/730), respectively. Multivariate analysis of the prediction of persistent PSA levels using preoperative factors revealed that PSA density, percentage of positive cancer cores, biopsy grade group and bCC/IDCP were independent prognostic factors. Furthermore, multivariate analysis of the prediction of persistent PSA levels using postoperative factors, excluding pN1, revealed that pathological grade group, pCC/IDCP, seminal vesicle invasion and lymphovascular invasion were independent prognostic factors. In the receiver operating characteristic curve analysis for predicting persistent PSA after RARP, areas under the receiver operating characteristic curve for the model with preoperative factors, postoperative factors, including pN1, and postoperative factors, excluding pN1, were 0.827, 0.833 and 0.834, respectively. Conclusions bCC/IDCP predicted persistent PSA after RARP in the overall population, while pCC/IDCP predicted persistent PSA only when the pN1 population was excluded. This may be useful for predicting susceptible patients with worse outcomes.
Collapse
Affiliation(s)
- Takeshi Sasaki
- Department of Nephro‐Urologic Surgery and Andrology, Graduate School of MedicineMie UniversityTsuJapan
| | - Ikuo Kobayashi
- Department of UrologyAichi Medical UniversityNagakuteJapan
| | - Katsunori Uchida
- Department of Oncologic Pathology, Graduate School of MedicineMie UniversityTsuJapan
| | - Shinichiro Higashi
- Department of Nephro‐Urologic Surgery and Andrology, Graduate School of MedicineMie UniversityTsuJapan
| | - Satoru Masui
- Department of Nephro‐Urologic Surgery and Andrology, Graduate School of MedicineMie UniversityTsuJapan
| | - Kouhei Nishikawa
- Department of Nephro‐Urologic Surgery and Andrology, Graduate School of MedicineMie UniversityTsuJapan
| | - Toyonori Tsuzuki
- Department of Surgical PathologyAichi Medical UniversityNagakuteJapan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Graduate School of MedicineMie UniversityTsuJapan
| | - Naoto Sassa
- Department of UrologyAichi Medical UniversityNagakuteJapan
| | - Takahiro Inoue
- Department of Nephro‐Urologic Surgery and Andrology, Graduate School of MedicineMie UniversityTsuJapan
| |
Collapse
|
5
|
Ono Y, Okubo Y, Washimi K, Mikayama Y, Doiuch T, Hasegawa C, Yoshioka E, Ono K, Shiozawa M, Yokose T. Primary omental smooth muscle tumor in an adult male: a diagnostic dilemma for leiomyoma: a case report. J Med Case Rep 2024; 18:222. [PMID: 38704583 PMCID: PMC11070120 DOI: 10.1186/s13256-024-04537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The greater omentum comprises peritoneal, adipose, vascular, and lymphoid tissues. Most omental malignancies are metastatic tumors, and the incidence of primary tumors is rare. We report on a prior omental smooth muscle tumor case in an adult male patient. CASE PRESENTATION A 54-year-old Japanese male patient with no relevant medical history was diagnosed with an abdominal mass during a routine medical checkup. Subsequent contrast-enhanced computed tomography revealed a mass of approximately 3 cm in size in the greater omentum, and a laparotomy was performed. A 27 × 25 × 20 mm raised lesion was found in the omentum. Microscopically, spindle cells were observed and arranged in whorls and fascicles. Individual tumor cells had short spindle-shaped nuclei with slightly increased chromatin and were characterized by a slightly eosinophilic, spindle-shaped cytoplasm. The mitotic count was less than 1 per 50 high-power fields. The tumor cells showed positive immunoreactivity for α smooth muscle actin, HHF35, and desmin on immunohistochemical examination. The Ki-67 labeling index using the average method was 1.76% (261/14806). No immunoreactivity was observed for any of the other tested markers. We considered leiomyoma owing to a lack of malignant findings. However, primary omental leiomyoma has rarely been reported, and it can be difficult to completely rule out the malignant potential of smooth muscle tumors in soft tissues. Our patient was decisively diagnosed with a primary omental smooth muscle tumor considering leiomyoma. Consequently, the patient did not undergo additional adjuvant therapy and was followed up. The patient was satisfied with treatment and showed neither recurrence nor metastasis at the 13-month postoperative follow-up. DISCUSSION AND CONCLUSION We encountered a primary smooth muscle tumor of the greater omentum with no histological findings suggestive of malignancy in an adult male patient. However, omental smooth muscle tumors are extremely difficult to define as benign, requiring careful diagnosis. Further case reports with long-term follow-up and case series are required to determine whether a true omental benign smooth muscle tumor (leiomyoma) exists. In addition, proper interpretation of the Ki-67 labeling index should be established. This case study is a foundation for future research.
Collapse
Affiliation(s)
- Yukari Ono
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| | - Kota Washimi
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Yo Mikayama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Tsunehiro Doiuch
- Department of Diagnostic and Interventional Radiology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Chie Hasegawa
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Emi Yoshioka
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Kyoko Ono
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Manabu Shiozawa
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| |
Collapse
|
6
|
Sayan M, Tuac Y, Akgul M, Pratt GK, Rowan MD, Akbulut D, Kucukcolak S, Tjio E, Moningi S, Leeman JE, Orio PF, Nguyen PL, D’Amico AV, Aktan C. Prognostic Significance of the Cribriform Pattern in Prostate Cancer: Clinical Outcomes and Genomic Alterations. Cancers (Basel) 2024; 16:1248. [PMID: 38610926 PMCID: PMC11011150 DOI: 10.3390/cancers16071248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE Given the diverse clinical progression of prostate cancer (PC) and the evolving significance of histopathological factors in its management, this study aimed to explore the impact of cribriform pattern 4 (CP4) on clinical outcomes in PC patients and examine its molecular characteristics. METHODS This retrospective study analyzed data from The Cancer Genome Atlas (TCGA) database and included PC patients who underwent radical prostatectomy (RP) and had pathology slides available for the assessment of CP4. A multivariable competing risk regression analysis was used to assess the association between CP4 and progression-free survival (PFS) while adjusting for established PC prognostic factors. The frequency of genomic alterations was compared between patients with and without CP4 using the Fisher's exact test. RESULTS Among the 394 patients analyzed, 129 (32.74%) had CP4. After a median follow-up of 40.50 months (IQR: 23.90, 65.60), the presence of CP4 was significantly associated with lower PFS (AHR, 1.84; 95% CI, 1.08 to 3.114; p = 0.023) after adjusting for covariates. Seven hub genes-KRT13, KRT5, KRT15, COL17A1, KRT14, KRT16, and TP63-had significantly lower mRNA expression levels in patients with CP4 compared to those without. CONCLUSIONS PC patients with CP4 have distinct genomic alterations and are at a high risk of disease progression following RP. Therefore, these patients may benefit from additional post-RP treatments and should be the subject of a prospective randomized clinical trial.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Yetkin Tuac
- Department of Statistics, Ankara University, 06100 Ankara, Türkiye;
| | - Mahmut Akgul
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Grace K. Pratt
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Mary D. Rowan
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Dilara Akbulut
- Center for Cancer Research, Laboratory of Pathology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samet Kucukcolak
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elza Tjio
- Histopathology Department, Harrogate District Hospital, Harrogate HG2 7SX, UK
| | - Shalini Moningi
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan E. Leeman
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Peter F. Orio
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Paul L. Nguyen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Anthony V. D’Amico
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Cagdas Aktan
- Department of Medical Biology, Faculty of Medicine, Bandirma Onyedi Eylul University, 10250 Balikesir, Türkiye
| |
Collapse
|
7
|
Nguyen NNJ, Liu K, Lajkosz K, Iczkowski KA, van der Kwast TH, Downes MR. Addition of cribriform pattern 4 and intraductal prostatic carcinoma into the CAPRA-S tool improves post-radical prostatectomy patient stratification in a multi-institutional cohort. J Clin Pathol 2024:jcp-2023-209222. [PMID: 38378247 DOI: 10.1136/jcp-2023-209222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
AIMS Pre-surgical risk classification tools for prostate cancer have shown better patient stratification with the addition of cribriform pattern 4 (CC) and intraductal prostatic carcinoma (IDC) identified in biopsies. Here, we analyse the additional prognostic impact of CC/IDC observed in prostatectomies using Cancer of Prostate Risk Assessment post-surgical (CAPRA-S) stratification. METHODS A retrospective cohort of treatment-naïve radical prostatectomy specimens from three North American academic institutions (2010-2018) was assessed for the presence of CC/IDC. Patients were classified, after calculating the CAPRA-S scores, into low-risk (0-2), intermediate-risk (3-5) and high-risk (6-12) groups. Kaplan-Meier curves were created to estimate biochemical recurrence (BCR)-free survival. Prognostic performance was examined using Harrell's concordance index, and the effects of CC/IDC within each risk group were evaluated using the Cox proportional hazards models. RESULTS Our cohort included 825 prostatectomies (grade group (GG)1, n=94; GG2, n=475; GG3, n=185; GG4, n=13; GG5, n=58). CC/IDC was present in 341 (41%) prostatectomies. With a median follow-up of 4.2 years (range 2.9-6.4), 166 (20%) patients experienced BCR. The CAPRA-S low-risk, intermediate-risk and high-risk groups comprised 357 (43%), 328 (40%) and 140 (17%) patients, and discriminated for BCR-free survival (p<0.0001). For CAPRA-S scores 3-5, the addition of CC/IDC status improved stratification for BCR (HR 2.27, 95% CI 1.41 to 3.66, p<0.001) and improved the overall c-index (0.689 vs 0.667, analysis of variance p<0.001). CONCLUSION The addition of CC/IDC into the CAPRA-S classification significantly improved post-radical prostatectomy patient stratification for BCR among the intermediate-risk group (CAPRA-S scores 3-5). The reporting of CC and IDC should be included in future prostate cancer stratification tools for improved outcome prediction.
Collapse
Affiliation(s)
| | - Kristen Liu
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Katherine Lajkosz
- Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Theodorus H van der Kwast
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Michelle R Downes
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anatomic Pathology, Precision Diagnostics & Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Naito Y, Kato M, Nagayama J, Sano Y, Matsuo K, Inoue S, Sano T, Ishida S, Matsukawa Y, Tsuzuki T, Akamatsu S. Recent insights on the clinical, pathological, and molecular features of intraductal carcinoma of the prostate. Int J Urol 2024; 31:7-16. [PMID: 37728330 DOI: 10.1111/iju.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Intraductal carcinoma of the prostate, a unique histopathologic entity that is often observed (especially in advanced prostate cancer), is characterized by the proliferation of malignant cells within normal acini or ducts surrounded by a basement membrane. Intraductal carcinoma of the prostate is almost invariably associated with an adjacent high-grade carcinoma and is occasionally observed as an isolated subtype. Intraductal carcinoma of the prostate has been demonstrated to be an independent poor prognostic factor for all stages of cancer, whether localized, de novo metastatic, or castration-resistant. It also has a characteristic genetic profile, including high genomic instability. Recognizing and differentiating it from other pathologies is therefore important in patient management, and morphological diagnostic criteria for intraductal carcinoma of the prostate have been established. This review summarizes and outlines the clinical and pathological features, differential diagnosis, molecular aspects, and management of intraductal carcinoma of the prostate, as described in previous studies. We also present a discussion and future perspectives regarding intraductal carcinoma of the prostate.
Collapse
Affiliation(s)
- Yushi Naito
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun Nagayama
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuta Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuna Matsuo
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Inoue
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoyasu Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shohei Ishida
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Shusuke Akamatsu
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Zhu S, Xu N, Zeng H. Molecular complexity of intraductal carcinoma of the prostate. Cancer Med 2024; 13:e6939. [PMID: 38379333 PMCID: PMC10879723 DOI: 10.1002/cam4.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive subtype of prostate cancer characterized by the growth of tumor cells within the prostate ducts. It is often found alongside invasive carcinoma and is associated with poor prognosis. Understanding the molecular mechanisms driving IDC-P is crucial for improved diagnosis, prognosis, and treatment strategies. This review summarizes the molecular characteristics of IDC-P and their prognostic indications, comparing them to conventional prostate acinar adenocarcinoma, to gain insights into its unique behavior and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Belue MJ, Blake Z, Yilmaz EC, Lin Y, Harmon SA, Nemirovsky DR, Enders JJ, Kenigsberg AP, Mendhiratta N, Rothberg M, Toubaji A, Merino MJ, Gurram S, Wood BJ, Choyke PL, Turkbey B, Pinto PA. Is prostatic adenocarcinoma with cribriform architecture more difficult to detect on prostate MRI? Prostate 2023; 83:1519-1528. [PMID: 37622756 PMCID: PMC10840859 DOI: 10.1002/pros.24610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Cribriform (CBFM) pattern on prostate biopsy has been implicated as a predictor for high-risk features, potentially leading to adverse outcomes after definitive treatment. This study aims to investigate whether the CBFM pattern containing prostate cancers (PCa) were associated with false negative magnetic resonance imaging (MRI) and determine the association between MRI and histopathological disease burden. METHODS Patients who underwent multiparametric magnetic resonance imaging (mpMRI), combined 12-core transrectal ultrasound (TRUS) guided systematic (SB) and MRI/US fusion-guided biopsy were retrospectively queried for the presence of CBFM pattern at biopsy. Biopsy cores and lesions were categorized as follows: C0 = benign, C1 = PCa with no CBFM pattern, C2 = PCa with CBFM pattern. Correlation between cancer core length (CCL) and measured MRI lesion dimension were assessed using a modified Pearson correlation test for clustered data. Differences between the biopsy core groups were assessed with the Wilcoxon-signed rank test with clustering. RESULTS Between 2015 and 2022, a total of 131 consecutive patients with CBFM pattern on prostate biopsy and pre-biopsy mpMRI were included. Clinical feature analysis included 1572 systematic biopsy cores (1149 C0, 272 C1, 151 C2) and 736 MRI-targeted biopsy cores (253 C0, 272 C1, 211 C2). Of the 131 patients with confirmed CBFM pathology, targeted biopsy (TBx) alone identified CBFM in 76.3% (100/131) of patients and detected PCa in 97.7% (128/131) patients. SBx biopsy alone detected CBFM in 61.1% (80/131) of patients and PCa in 90.8% (119/131) patients. TBx and SBx had equivalent detection in patients with smaller prostates (p = 0.045). For both PCa lesion groups there was a positive and significant correlation between maximum MRI lesion dimension and CCL (C1 lesions: p < 0.01, C2 lesions: p < 0.001). There was a significant difference in CCL between C1 and C2 lesions for T2 scores of 3 and 5 (p ≤ 0.01, p ≤ 0.01, respectively) and PI-RADS 5 lesions (p ≤ 0.01), with C2 lesions having larger CCL, despite no significant difference in MRI lesion dimension. CONCLUSIONS The extent of disease for CBFM-containing tumors is difficult to capture on mpMRI. When comparing MRI lesions of similar dimensions and PIRADS scores, CBFM-containing tumors appear to have larger cancer yield on biopsy. Proper staging and planning of therapeutic interventions is reliant on accurate mpMRI estimation. Special considerations should be taken for patients with CBFM pattern on prostate biopsy.
Collapse
Affiliation(s)
- Mason J. Belue
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zoë Blake
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Enis C. Yilmaz
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yue Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie A. Harmon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel R. Nemirovsky
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob J. Enders
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander P. Kenigsberg
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neil Mendhiratta
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Rothberg
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Antoun Toubaji
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria J. Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Gurram
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradford J. Wood
- Center for Interventional Oncology, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter A. Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|