1
|
Gao FT, Zhang M, Shimadate Y, Kato A, Li YX, Jia YM, Yu CY. Enantiomeric C-6 fluorinated swainsonine derivatives as highly selective and potent inhibitors of α-mannosidase and α-l-rhamnosidase: Design, synthesis and structure-activity relationship study. Eur J Med Chem 2025; 282:117031. [PMID: 39556895 DOI: 10.1016/j.ejmech.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Six C-6 fluorinated d-swainsonine derivatives and their enantiomers have been designed based on initial docking calculations, and synthesized from enantiomeric ribose-derived aldehydes, respectively. Glycosidase inhibition assay of these derivatives with d-swainsonine (1) and l-swainsonine (ent-1) as contrasts found that the C-6 fluorinated d-swainsonine derivatives with C-8 configurations as R (α) showed specific and potent inhibitions of jack bean α-mannosidase (model enzyme of Golgi α-mannosidase II); whereas their enantiomers with C-8 configurations as S (β) were powerful and selective α-l-rhamnosidase inhibitors. Molecular docking calculations found the C-6 fluorinatedd-swainsonine derivatives 21, 24 and 25 with highly coincident binding conformations with d-swainsonine (1) in their interactions with the active site of α-mannosidase (PDB ID: 1HWW). Reliability of the docking results were confirmed by Molecular Dynamics (MD) simulation. Additionally, solid interactions with residues Gln-392 and Tyr-393 in the active site of α-l-rhamnosidase (PDB ID: 3W5N) were proved to be vital for potent α-l-rhamnosidase inhibitions of the l-swainsonine derivatives. The role of C-6 fluorines in swainsonine derivatives well demonstrated the "mimic effect" of fluorine to hydrogen by minimal influence on the binding conformations and effective compensation for any possible lost interactions. This work contributes to a comprehensive understanding of the structure-activity relationship (SAR) of the fluorinated swainsonines and ever reported branched swainsonines, and has laid good foundation for development of more potent α-mannosidase and α-l-rhamnosidase inhibitors.
Collapse
Affiliation(s)
- Feng-Teng Gao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Yan X, Nie X, Li Q, Gao F, Liu P, Tan Z, Shi H. Expression and Characterization of a GH38 α-Mannosidase from the Hyperthermophile Pseudothermotoga thermarum. Appl Biochem Biotechnol 2023; 195:1823-1836. [PMID: 36399304 DOI: 10.1007/s12010-022-04243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
This study focused on the bio-characterization of a GH38 α-mannosidase from the hyperthermophile Pseudothermotoga thermarum DSM 5069. We aimed to successfully express and characterize this thermophilic α-mannosidase and to assess its functional properties. Subsequently, recombinant α-mannosidase PtαMan was expressed in Escherichia coli BL21(DE3) and purified via affinity chromatography, and native protein was verified as a tetramer by size exclusion chromatography. In addition, the activity of α-mannosidase PtαMan was relatively stable at pH 5.0-6.5 and temperatures up to 75 ℃. α-Mannosidase PtαMan was active toward Co2+ and had a good catalytic efficiency deduced from the kinetic parameters. However, its activity was strongly inhibited by Cu2+, Zn2+, SDS, and swainsonine. In summary, this cobalt-required α-mannosidase is putatively involved in the direct modification of glycoproteins.
Collapse
Affiliation(s)
- Xing Yan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Xinling Nie
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Qingfei Li
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Feng Gao
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Pei Liu
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Zhongbiao Tan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Hao Shi
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China.
| |
Collapse
|
3
|
Li S, Jing X. Fates of dietary sterols in the insect alimentary canal. CURRENT OPINION IN INSECT SCIENCE 2020; 41:106-111. [PMID: 32927332 DOI: 10.1016/j.cois.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Sterols serve structural and physiological roles in insects. However, insects and other arthropods have lost many genes in the sterol biosynthesis pathway, so they must acquire sterols from their food. Sterols occur naturally as free (unconjugated) molecules, and as conjugated ones (mostly steryl esters). Once sterols are ingested and make their way into the gut, steryl esters can be converted into free sterols by Magro protein, a lipase excreted by enterocytes. Sterols in the free form enter midgut enterocytes through NPC1b and are then transported to the smooth endoplasmic reticulum membrane for possible metabolism. For most insect herbivores, phytosterol dealkylation converts plant sterols into cholesterol. Some ingested sterols may also be consumed by microbiota dwelling inside the insect gut lumen; bacteria use sterols as a source of carbon and energy. Further studies will reveal interesting and exciting discoveries regarding the pathways for the dietary sterols entering the insect alimentary canal.
Collapse
Affiliation(s)
- Sali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Vidya C, Gnanesh Kumar B, Chinmayee C, Singh SA. Purification, characterization and specificity of a new GH family 35 galactosidase from Aspergillus awamori. Int J Biol Macromol 2020; 156:885-895. [DOI: 10.1016/j.ijbiomac.2020.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/10/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
|
5
|
Gazara RK, Cardoso C, Bellieny-Rabelo D, Ferreira C, Terra WR, Venancio TM. De novo transcriptome sequencing and comparative analysis of midgut tissues of four non-model insects pertaining to Hemiptera, Coleoptera, Diptera and Lepidoptera. Gene 2017; 627:85-93. [DOI: 10.1016/j.gene.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 02/09/2023]
|
6
|
Profeta GS, Pereira JAS, Costa SG, Azambuja P, Garcia ES, Moraes CDS, Genta FA. Standardization of a Continuous Assay for Glycosidases and Its Use for Screening Insect Gut Samples at Individual and Populational Levels. Front Physiol 2017; 8:308. [PMID: 28553236 PMCID: PMC5427678 DOI: 10.3389/fphys.2017.00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/28/2017] [Indexed: 11/13/2022] Open
Abstract
Glycoside Hydrolases (GHs) are enzymes able to recognize and cleave glycosidic bonds. Insect GHs play decisive roles in digestion, in plant-herbivore, and host-pathogen interactions. GH activity is normally measured by the detection of a release from the substrate of products as sugars units, colored, or fluorescent groups. In most cases, the conditions for product release and detection differ, resulting in discontinuous assays. The current protocols result in using large amounts of reaction mixtures for the obtainment of time points in each experimental replica. These procedures restrain the analysis of biological materials with limited amounts of protein and, in the case of studies regarding small insects, implies in the pooling of samples from several individuals. In this respect, most studies do not assess the variability of GH activities across the population of individuals from the same species. The aim of this work is to approach this technical problem and have a deeper understanding of the variation of GH activities in insect populations, using as models the disease vectors Rhodnius prolixus (Hemiptera: Triatominae) and Lutzomyia longipalpis (Diptera: Phlebotominae). Here we standardized continuous assays using 4-methylumbelliferyl derived substrates for the detection of α-Glucosidase, β-Glucosidase, α-Mannosidase, N-acetyl-hexosaminidase, β-Galactosidase, and α-Fucosidase in the midgut of R. prolixus and L. longipalpis with results similar to the traditional discontinuous protocol. The continuous assays allowed us to measure GH activities using minimal sample amounts with a higher number of measurements, resulting in data that are more reliable and less time and reagent consumption. The continuous assay also allows the high-throughput screening of GH activities in small insect samples, which would be not applicable to the previous discontinuous protocol. We applied continuous GH measurements to 90 individual samples of R. prolixus anterior midgut homogenates using a high-throughput protocol. α-Glucosidase and α-Mannosidase activities showed the normal distribution in the population. β-Glucosidase, β-Galactosidase, N-acetyl-hexosaminidase, and α-Fucosidase activities showed non-normal distributions. These results indicate that GHs fluorescent-based high-throughput assays apply to insect samples and that the frequency distribution of digestive activities should be considered in data analysis, especially if a small number of samples is used.
Collapse
Affiliation(s)
- Gerson S Profeta
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ)Rio de Janeiro, Brazil
| | - Jessica A S Pereira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ)Rio de Janeiro, Brazil
| | - Samara G Costa
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ)Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ)Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia MolecularRio de Janeiro, Brazil
| | - Eloi S Garcia
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ)Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia MolecularRio de Janeiro, Brazil
| | | | - Fernando A Genta
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ)Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia MolecularRio de Janeiro, Brazil
| |
Collapse
|