1
|
Chen X, Yao S, Xie L, Li J, Xiong L, Yang X, Chen Y, Cao F, Hou Q, You M, Liu Y, Gurr GM, You S. Disruption of the odorant receptor co-receptor (Orco) reveals its critical role in multiple olfactory behaviors of a cosmopolitan pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104248. [PMID: 39674517 DOI: 10.1016/j.ibmb.2024.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The olfactory system of insects plays a pivotal role in multiple, essential activities including feeding, mating, egg laying, and host localization. The capacity of odorant receptors to recognize odor molecules relies on odorant receptor co-receptors forming heterodimers. Here we report the successful engineering a homozygous mutant strain of diamondback moth (Plutella xylostella) in which the odorant receptor co-receptor PxOrco was silenced using CRISPR/Cas9. This insect is a globally important crop pest for which novel control methods are urgently required. Behavioral assays demonstrated that PxOrco knockout males exhibited abolished courtship behaviors, inability to mate, and loss of selective preference for P. xylostella's key sex pheromone components. Whilst female mating behavior and fecundity remained unaffected by PxOrco knockout, oviposition response to leaf alcohol, a key cue for normal oviposition behavior, was lost. Electroantennography revealed drastically reduced responses to sex pheromones and plant volatiles in PxOrco-deficient adults but food location by larvae was unaffected. Moreover, expression analysis of PxOrco-deficient pheromone receptors (PRs) indicated varied regulation patterns, with down-regulation observed in several PRs in both sexes. These findings underscore the critical role of PxOrco in regulating multiple olfactory aspects in P. xylostella, including feeding, mating, and host location. Our study identifies the potential of disrupting the Orco gene in this and other pest species to provide novel avenues for future pest control.
Collapse
Affiliation(s)
- Xuanhao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Shuyuan Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Liangqian Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Jinyang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Lei Xiong
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Xiaozhen Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Yi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Fang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Qing Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Yuanyuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Geoff M Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Gulbali Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Long T, Mohapatra P, Ballou S, Menuz K. Odorant receptor co-receptors affect expression of tuning receptors in Drosophila. Front Cell Neurosci 2024; 18:1390557. [PMID: 38832356 PMCID: PMC11145718 DOI: 10.3389/fncel.2024.1390557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
Insects detect odorants using two large families of heteromeric receptors, the Odorant Receptors (ORs) and Ionotropic Receptors (IRs). Most OR and IR genes encode odorant-binding "tuning" subunits, whereas four (Orco, Ir8a, Ir25a, and Ir76b) encode co-receptor subunits required for receptor function. Olfactory neurons are thought to degenerate in the absence of Orco in ants and bees, and limited data suggest this may happen to some olfactory neurons in Drosophila fruit flies as well. Here, we thoroughly examined the role of co-receptors on olfactory neuron survival in Drosophila. Leveraging knowledge that olfactory neuron classes are defined by the expression of different tuning receptors, we used tuning receptor expression in antennal transcriptomes as a proxy for the survival of distinct olfactory neuron classes. Consistent with olfactory neuron degeneration, expression of many OR-family tuning receptors is decreased in Orco mutants relative to controls, and transcript loss is progressive with age. The effects of Orco are highly receptor-dependent, with expression of some receptor transcripts nearly eliminated and others unaffected. Surprisingly, further studies revealed that olfactory neuron classes with reduced tuning receptor expression generally survive in Orco mutant flies. Furthermore, there is little apoptosis or neuronal loss in the antenna of these flies. We went on to investigate the effects of IR family co-receptor mutants using similar approaches and found that expression of IR tuning receptors is decreased in the absence of Ir8a and Ir25a, but not Ir76b. As in Orco mutants, Ir8a-dependent olfactory neurons mostly endure despite near-absent expression of associated tuning receptors. Finally, we used differential expression analysis to identify other antennal genes whose expression is changed in IR and OR co-receptor mutants. Taken together, our data indicate that odorant co-receptors are necessary for maintaining expression of many tuning receptors at the mRNA level. Further, most Drosophila olfactory neurons persist in OR and IR co-receptor mutants, suggesting that the impact of co-receptors on neuronal survival may vary across insect species.
Collapse
Affiliation(s)
- Teng Long
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Pratyajit Mohapatra
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Sydney Ballou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
3
|
Xu H, Gao Y, Hassan A, Liu Y, Zhao X, Huang Q. Neuroregulation of foraging behavior mediated by the olfactory co-receptor Orco in termites. Int J Biol Macromol 2024; 262:129639. [PMID: 38331075 DOI: 10.1016/j.ijbiomac.2024.129639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
Olfaction is critical for survival because it allows animals to look for food and detect pheromonal cues. Neuropeptides modulate olfaction and behaviors in insects. While how the neuroregulation of olfactory recognition affects foraging behavior in termites is still unclear. Here, we analyzed the change after silencing the olfactory co-receptor gene (Orco) and the neuropeptide Y gene (NPY), and then investigated the impact of olfactory recognition on foraging behavior in Odontotermes formosanus under different predation pressures. The knockdown of Orco resulted in the reduced Orco protein expression in antennae and the decreased EAG response to trail pheromones. In addition, NPY silencing led to the damaged ability of olfactory response through downregulating Orco expression. Both dsOrco- and dsNPY-injected worker termites showed significantly reduced walking activity and foraging success. Additionally, we found that 0.1 pg/cm trail pheromone and nestmate soldiers could provide social buffering to relieve the adverse effect of predator ants on foraging behavior in worker termites with the normal ability of olfactory recognition. Our orthogonal experiments further verified that Orco/NPY genes are essential in manipulating termite olfactory recognition during foraging under different predation pressures, suggesting that the neuroregulation of olfactory recognition plays a crucial role in regulating termite foraging behavior.
Collapse
Affiliation(s)
- Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an 716000, Shaanxi, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, Yan'an University, Yan'an 716000, Shaanxi, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yutong Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xincheng Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, Henan, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
4
|
Li J, Zhang L. Current understandings of olfactory molecular events in the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21996. [PMID: 36575613 DOI: 10.1002/arch.21996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The Asian corn borer Ostrinia furnacalis (Lepidoptera: Crambidae) is a serious corn pest with widespread distribution in East Asia. Its olfactory mechanism is a focus of scientific study, aiming to find good ways to control this pest. Molecular events are considered to be important in olfactory mechanism. Current understandings of olfactory molecular events in O. furnacalis, mainly involving sex pheromones and olfactory proteins, were summarized to provide a reference for further studies. O. furnacalis sex pheromone contains two components E-12-tetradecenyl acetate and Z-12-tetradecenyl acetate, which may be recognized and bound by the pheromone binding proteins OfurPBP3 and OfurPBP2, and then transported to the odorant receptors (ORs) OfurOR4 and OfurOR6 to activate them. The ORs OfurOR8, OfurOR7 and OfurOR5b mainly respond to the sex pheromone components of other Ostrinia species, E-11-tetradecenyl acetate, Z-11-tetradecenyl acetate and Z-9-tetradecenyl acetate. The OR OfurOR27 responds strongly to plant odorants nonanal, octanal and 1-octanol. Much work remains to be done to fully understand odorants with olfactory activity to O. furnacalis and the functions of its olfactory proteins. These studies will help to reveal olfactory mechanism in O. furnacalis, with the aim of regulating its behaviors to control this pest.
Collapse
Affiliation(s)
- Jia Li
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Long Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Sun H, Bu LA, Su SC, Guo D, Gao CF, Wu SF. Knockout of the odorant receptor co-receptor, orco, impairs feeding, mating and egg-laying behavior in the fall armyworm Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103889. [PMID: 36493964 DOI: 10.1016/j.ibmb.2022.103889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The olfactory transduction system of insects is involved in multiple behavioral processes such as foraging, mating, and egg-laying behavior. In the insect olfactory receptor neurons (ORNs), the odorant receptor co-receptor (Orco) is an obligatory component that is required for dimerization with odorant receptors (ORs) to form a ligand-gated ion channel complex. The ORs/Orco heteromeric complex plays a crucial role in insect olfaction. To explore the function of OR-mediated olfaction in the physiological behavior of the fall armyworm, Spodoptera frugiperda, we applied CRISPR/Cas9 genome editing to mutate its Orco gene and constructed a homozygous mutant strain of Orco (Orco-/-) by genetic crosses. Electroantennogram (EAG) analysis showed that the responses of Orco-/- male moths to two universal sex pheromones, Z9-14: Ac and Z7-12: Ac, were abolished. We found that Orco-/- males cannot successfully mate with female moths. An oviposition preference assay confirmed that Orco-/- female moths had a reduced preference for the optimal host plant maize. A larval feeding assay revealed that the time for Orco-/- larvae to locate the food source was significantly longer than in the wild-type. Overall, in the absence of Orco, the OR-dependent olfactory behavior was impaired in both larval and adult stages. Our results confirm that Orco is essential for multiple behavioral processes related to olfaction in the fall armyworm.
Collapse
Affiliation(s)
- Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Ling-Ao Bu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Shao-Cong Su
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Di Guo
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
6
|
Zhang Q, Chen J, Wang Y, Lu Y, Dong Z, Shi W, Pang L, Ren S, Chen X, Huang J. The odorant receptor co-receptor gene contributes to mating and host-searching behaviors in parasitoid wasps. PEST MANAGEMENT SCIENCE 2023; 79:454-463. [PMID: 36177949 DOI: 10.1002/ps.7214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Biological control of pest insects by parasitoid wasps is an effective and environmentally friendly strategy compared with the use of synthetic pesticides. Successful courtship and host-search behaviors of parasitoid wasps are important for biological control efficiency and are often mediated by chemical odorant cues. The odorant receptor co-receptor (Orco) gene has an essential role in the perception of odors in insects. However, the function of Orco in the mating and host-searching behaviors of parasitoid wasps remains underexplored. RESULTS We identified the full-length Orco genes of four Drosophila parasitoid species in the genus Leptopilina, namely L. heterotoma, L. boulardi, L. syphax and L. drosophilae. Sequence alignment and membrane-topology analysis showed that Leptopilina Orcos had similar amino acid sequences and topology structures. Phylogenetic analysis revealed that Leptopilina Orcos were highly conserved. Furthermore, the results of quantitative real-time polymerase chain reactions showed that all four Orco genes had a typical antennae-biased tissue expression pattern. After knockdown of Orco in these different parasitoid species, we found that Orco-deficient male parasitoid wasps, but not females, lost their courtship ability. Moreover, Orco-deficient female parasitoid wasps presented impaired host-searching performance and decreased oviposition rates. CONCLUSION Our study demonstrates that Orcos are essential in the mating and host-searching behaviors of parasitoid wasps. To our knowledge, this is the first time that the functions of Orco genes have been characterized in parasitoid wasps, which broadens our understanding of the chemoreception basis of parasitoid wasps and contributes to developing advanced pest management strategies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qichao Zhang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yueqi Lu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhi Dong
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wenqi Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shaopeng Ren
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Zhang XX, Yang B, Sun DD, Guo MB, Zhang J, Wang GR. Ionotropic receptor 8a is involved in the attraction of Helicoverpa armigera to acetic acid. INSECT SCIENCE 2022; 29:657-668. [PMID: 34427396 DOI: 10.1111/1744-7917.12962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 05/14/2023]
Abstract
Ionotropic receptors (IRs) were first found in Drosophila melanogaster, and derive from ionotropic glutamate receptors (iGluRs), which are implicated in detecting acids, ammonia, amine, temperature and humidity. Although IRs are involved in sensing acid odors in a few insects, such as D. melanogaster, Aedes aegypti, and Manduca sexta, the function of IRs in Helicoverpa armigera is still unknown. IR8a was confirmed to be a co-receptor associated with acid detection. From the results of phylogenetic analysis, HarmIR8a displayed high similarity compared to homologs in D. melanogaster, M. sexta, and A. aegypti, suggesting that HarmIR8a might have a consistent function as a co-receptor for acid detection. In this study, clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9)-mediated genome editing was implemented to knockout HarmIR8a for in vivo functional analysis. Electrophysiological and behavioral assays were performed to compare the differences between HarmIR8a knockout mutants and wild type individuals. From electroantennogram (EAG) analysis, we found that wild type H. armigera adults could detect short-chain carboxylic acids. In addition, wind tunnel experiments showed that 1% acetic acid attracted wild type H. armigera adults. However, acid sensing and attraction were reduced or abolished in the HarmIR8a knockout mutants. Our data suggest that HarmIR8a is important for H. armigera to detect short-chain carboxylic acids and mediate attraction behavior to acetic acid.
Collapse
Affiliation(s)
- Xia-Xuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong-Dong Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Meng-Bo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
8
|
Chen XL, Li BL, Chen YX, Li GW, Wu JX. Functional analysis of the odorant receptor coreceptor in odor detection in Grapholita molesta (lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21837. [PMID: 34293199 DOI: 10.1002/arch.21837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The olfactory system must detect and discriminate various semiochemicals in the environment. In response to such diversity, insects have evolved a family of odorant-gated ion channels composed of a common receptor (coreceptor, Orco) and a ligand-binding tuning odorant receptor (OR) that confers odour specificity. This study aims to examine the expression pattern of Orco gene of Grapholita molesta (GmolOrco) and to elucidate the role of GmolOrco in detecting G. molesta sex pheromone and green leaf volatiles by using gene silencing via RNA interference (RNAi) coupled antennal electrophysiological (EAG). Multiple sequence alignment showed that GmolOrco shared high sequence similarities with the Orco ortholog of lepidopterans. The results of real-time quantitative PCR detection demonstrated that GmolOrco was predominantly expressed in adult antennae and had the highest expression quantity in adult period among the different developmental stages. Compared with the noninjected controls, GmolOrco expression in GmolOrcodouble-stranded RNA (dsRNA)-injected males was reduced to 39.92% and that in females was reduced to 40.43%. EAG assays showed that the responses of GmolOrco-dsRNA injected males to sex pheromones (Z)-8-dodecenyl acetate (Z8-12:OAc) and (Z)-8-dodecenyl alcohol (Z8-12:OH) were significantly reduced, and the GmolOrco-dsRNA-injected female to green leaf volatile (Z)-3-hexenyl acetate also significantly declined. We inferred that Orco-mediated olfaction was different in male and female G. molesta adults and was mainly involved in recognizing the sex pheromones released by female moths.
Collapse
Affiliation(s)
- Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Bo-Liao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Yu-Xin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Zhang X, Liu P, Qin Q, Li M, Meng R, Zhang T. Characterizing the Role of Orco Gene in Detecting Aggregation Pheromone and Food Resources in Protaetia brevitarsis Leiws (Coleoptera: Scarabaeidae). Front Physiol 2021; 12:649590. [PMID: 33927641 PMCID: PMC8076894 DOI: 10.3389/fphys.2021.649590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 11/20/2022] Open
Abstract
An accurate olfactory system for recognizing semiochemicals and environmental chemical signals plays crucial roles in survival and reproduction of insects. Among all olfaction-related proteins, olfactory receptors (ORs) contribute to the conversion of chemical stimuli to electric signals and thereby are vital in odorant recognition. Olfactory receptor co-receptor (Orco), one of the most conserved ORs, is extremely essential in recognizing odorants through forming a ligand-gated ion channel complex with conventional ligand-binding odorant receptors. We have previously identified aggregation pheromone in Protaetia brevitarsis (Coleoptera: Scarabaeidae), a native agricultural and horticultural pest in East-Asia. However, to our best knowledge, its olfaction recognition mechanisms are still veiled. To illustrate how P. brevitarsis recognize aggregation pheromone and host plants, in the present study we cloned and sequenced the full-length Orco gene from P. brevitarsis antennae (named PbreOrco) and found that PbreOrco is highly conserved and similar to Orcos from other Coleoptera insects. Our real-time quantitative PCR (qRT-PCR) results showed that PbreOrco is mainly expressed in antenna. We also demonstrated that silencing PbreOrco using RNA interference through injecting dsOrco fragment significantly inhibited PbreOrco expression in comparison with injecting control dsGFP and subsequently revealed using electroantennogram and behavioral bioassays that decreasing PbreOrco transcript abundance significantly impaired the responses of P. brevitarsis to intraspecific aggregation pheromone and prolonged the time of P. brevitarsis spending on food seeking. Overall, our results demonstrated that PbreOrco is crucial in mediating odorant perception in P. brevitarsis.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Baoding, China.,Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Panjing Liu
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Baoding, China.,Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Qiuju Qin
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Min Li
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Baoding, China.,Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| | - Runjie Meng
- Baoding Vocational and Technical College, Baoding, China
| | - Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Baoding, China.,Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, China
| |
Collapse
|
10
|
Li J, Wang X, Zhang L. Sex pheromones and olfactory proteins in Antheraea moths: A. pernyi and A. polyphemus (Lepidoptera: Saturniidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21729. [PMID: 32761939 DOI: 10.1002/arch.21729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Olfaction is essential for regulating the physiological and behavioral actions of insects with specific recognition of various odors. Antheraea moths (Lepidoptera: Saturniidae) possess relatively large bodies and antennae so that they are good subjects for exploring molecular aspects of insect olfaction. Current knowledge of the molecular aspects of Antheraea olfaction is focused on the Chinese tussah silkmoth A. pernyi Guérin-Méneville and another species A. polyphemus (Cramer) in their pheromones, odorant-binding proteins (OBPs), odorant receptors (ORs), odorant receptor coreceptors (ORCOs), sensory neuron membrane proteins (SNMPs), and odorant-degrading enzymes (ODEs). The first insect OBP, SNMP, and ODE were identified from A. polyphemus. This review summarizes the principal findings associated with the olfactory physiology and its molecular components in the two Antheraea species. Three types of olfactory neurons may have specific ORs for three respective sex-pheromone components, with the functional sensitivity and specificity mediated by three respective OBPs. SNMPs and ODEs are likely to play important roles in sex-pheromone detection, inactivation, and degradation. Identification and functional analysis of the olfactory molecules remain to be further performed in A. pernyi, A. polyphemus, and other Antheraea species.
Collapse
Affiliation(s)
- Jia Li
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Xiaoqi Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Long Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Yu J, Yang B, Chang Y, Zhang Y, Wang G. Identification of a General Odorant Receptor for Repellents in the Asian Corn Borer Ostrinia furnacalis. Front Physiol 2020; 11:176. [PMID: 32231586 PMCID: PMC7083148 DOI: 10.3389/fphys.2020.00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/17/2020] [Indexed: 11/13/2022] Open
Abstract
Attractants and repellents are considered to be an environment-friendly approach for pest management. Odorant receptors (ORs), which are located on the dendritic membranes of olfactory sensory neurons in insects, are essential genes for recognizing attractants and repellents. In the Asian corn borer, Ostrinia furnacalis, ORs that respond to sex pheromones have been characterized, but general ORs for plant odorants, especially for repellents, have not been identified. Nonanal is a plant volatile of maize that could result in avoidance of the oviposition process for female adults in O. furnacalis. In this study, we identified a female-biased OR that responds to nonanal using a Xenopus oocyte expression system. In addition, we found that OfurOR27 was also sensitive to two other compounds, octanal and 1-octanol. Behavioral analysis showed that octanal and 1-octanol also caused female avoidance of oviposition. Our results indicated that OfurOR27 is an OR that is sensitive to repellents. Moreover, the two newly identified repellents may help to develop a chemical ecology approach for pest control in O. furnacalis.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajun Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
12
|
Shiota Y, Sakurai T. Molecular Mechanisms of Sex Pheromone Reception in Moths. INSECT SEX PHEROMONE RESEARCH AND BEYOND 2020. [DOI: 10.1007/978-981-15-3082-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Ma SY, Liu YY, Lu W, Wang XG, Sun L, Yu K, Xia QY. Targeted activation of BmCyclinE in Bombyx mori using designer TAL effectors. INSECT SCIENCE 2019; 26:1055-1058. [PMID: 29885202 DOI: 10.1111/1744-7917.12613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Affiliation(s)
- San-Yuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yuan-Yuan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiao-Gang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Kai Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Mansourian S, Fandino RA, Riabinina O. Progress in the use of genetic methods to study insect behavior outside Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:45-56. [PMID: 31494407 DOI: 10.1016/j.cois.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In the span of a decade we have seen a rapid progress in the application of genetic tools and genome editing approaches in 'non-model' insects. It is now possible to target sensory receptor genes and neurons, explore their functional roles and manipulate behavioral responses in these insects. In this review, we focus on the latest examples from Diptera, Lepidoptera and Hymenoptera of how applications of genetic tools advanced our understanding of diverse behavioral phenomena. We further discuss genetic methods that could be applied to study insect behavior in the future.
Collapse
Affiliation(s)
| | - Richard A Fandino
- Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
15
|
Sun P, Yu S, Merchant A, Lei C, Zhou X, Huang Q. Downregulation of Orco and 5-HTT Alters Nestmate Discrimination in the Subterranean Termite Odontotermes formosanus (Shiraki). Front Physiol 2019; 10:714. [PMID: 31244679 PMCID: PMC6579916 DOI: 10.3389/fphys.2019.00714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023] Open
Abstract
Nestmate discrimination allows social insects to recognize nestmates from non-nestmates using colony-specific chemosensory cues, which typically evoke aggressive behavior toward non-nestmates. Functional analysis of genes associated with nestmate discrimination has been primarily focused on inter-colonial discrimination in Hymenopterans, and parallel studies in termites, however, are grossly lacking. To fill this gap, we investigated the role of two genes, Orco and 5-HTT, associated with chemosensation and neurotransmission respectively, in nestmate discrimination in a highly eusocial subterranean termite, Odontotermes formosanus (Shiraki). We hypothesized that knocking down of these genes will compromise the nestmate recognition and lead to the antagonistic behavior. To test this hypothesis, we carried out (1) an in vivo RNAi to suppress the expression of Orco and 5-HTT, respectively, (2) a validation study to examine the knockdown efficiency, and finally, (3) a behavioral assay to document the phenotypic impacts/behavioral consequences. As expected, the suppression of either of these two genes elevated stress level (e.g., vibrations and retreats), and led to aggressive behaviors (e.g., biting) in O. formosanus workers toward their nestmates, suggesting both Orco and 5-HTT can modulate nestmate discrimination in termites. This research links chemosensation and neurotransmission with nestmate discrimination at the genetic basis, and lays the foundation for functional analyses of nestmate discrimination in termites.
Collapse
Affiliation(s)
- Pengdong Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuxin Yu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Dong X, Liao H, Zhu G, Khuhro SA, Ye Z, Yan Q, Dong S. CRISPR/Cas9-mediated PBP1 and PBP3 mutagenesis induced significant reduction in electrophysiological response to sex pheromones in male Chilo suppressalis. INSECT SCIENCE 2019; 26:388-399. [PMID: 29058383 PMCID: PMC7379591 DOI: 10.1111/1744-7917.12544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/27/2017] [Accepted: 09/03/2017] [Indexed: 05/12/2023]
Abstract
Pheromone-binding proteins (PBPs) are thought to bind and transport sex pheromones onto the olfactory receptors on the dendrite membrane of olfactory neurons, and thus play a vital role in sex pheromone perception. However, the function of PBPs has rarely been demonstrated in vivo. In this study, two PBPs (PBP1 and PBP3) of Chilo suppressalis, one of the most notorious pyralid pests, were in vivo functionally characterized using insects with the PBP gene knocked out by the CRISPR/Cas9 system. First, through direct injection of PBP-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, a high rate of target-gene editing (checked with polled eggs) was induced at 24 h after injection, 21.3% for PBP1-sgRNA injected eggs and 19.5% for PBP3-sgRNA injected eggs. Second, by an in-crossing strategy, insects with mutant PBP1 or PBP3 (both with a premature stop codon) were screened, and homozygous mutants were obtained in the G3 generation. Third, the mutant insects were measured for electroantennogram (EAG) response to female sex pheromones. As a result, both PBP mutant males displayed significant reduction in EAG response, and this reduction in PBP1 mutants was higher than that in PBP3 mutants, indicating a more important role of PBP1. Finally, the relative importance of two PBPs and the possible off target effect induced by sgRNA-injection are discussed. Taken together, our study provides a deeper insight into the function of and interaction between different PBP genes in sex pheromone perception of C. suppressalis, as well as a valuable reference in methodology for gene functional study in other genes and other moth species.
Collapse
Affiliation(s)
- Xiao‐Tong Dong
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Hui Liao
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Guan‐Heng Zhu
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Sajjad Ali Khuhro
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Zhan‐Feng Ye
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Qi Yan
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| | - Shuang‐Lin Dong
- College of Plant ProtectionNanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjingChina
| |
Collapse
|
17
|
Zhang YN, Zhang XQ, Zhu GH, Zheng MY, Yan Q, Zhu XY, Xu JW, Zhang YY, He P, Sun L, Palli SR, Zhang LW, Dong SL. A Δ9 desaturase (SlitDes11) is associated with the biosynthesis of ester sex pheromone components in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:152-159. [PMID: 31027575 DOI: 10.1016/j.pestbp.2019.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
Sex pheromone biosynthesis in moths relies on the activity of multiple enzymes, including Δ9 desaturase, which plays an important role in catalyzing desaturation at the Δ9 position of the carbon chain. However, the physiological function of moth Δ9 desaturase has not been elucidated in vivo. In this study, we used the CRISPR/Cas9 system to knockout the Δ9 desaturase gene (SlitDes11) of Spodoptera litura to analyze its role in sex pheromone biosynthesis. First, through the direct injection of SlitDes11-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, gene editing was induced in around 30% of eggs 24 h after injection and was induced in 20.8% of the resulting adult moths. Second, using a sibling-crossing strategy, insects with mutant SlitDes11 (bearing a premature stop codon) were selected, and homozygous mutants were obtained in the G5 generation. Third, pheromone gland extracts of adult female homozygous SlitDes11 mutants were analyzed using Gas chromatography (GC). The results showed that titers of all three ester sex pheromone components; Z9, E11-14:Ac, Z9,E12-14:Ac, and Z9-14:Ac; were reduced by 62.40%, 78.50%, and 72.50%, respectively. This study provides the first direct evidence for the role of SlitDes11 in sex pheromone biosynthesis in S. litura, and indicates the gene could be as potential target to disrupt sexual communication in S. litura for developing a new pollution-free insecticide.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China.
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guan-Heng Zhu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China; Department of Entomology, University of Kentucky, Lexington, USA
| | - Mei-Yan Zheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yun-Ying Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | | | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China.
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
18
|
Accumulation of uric acid in the epidermis forms the white integument of Samia ricini larvae. PLoS One 2018; 13:e0205758. [PMID: 30321229 PMCID: PMC6188861 DOI: 10.1371/journal.pone.0205758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/01/2018] [Indexed: 02/04/2023] Open
Abstract
The white color in the larval integument of the silkworm Bombyx mori is considered the result of uric acid accumulation in its epidermal cells. Larvae of the eri silkworm Samia ricini (Lepidoptera; Saturniidae) also have a white and opaque integument, but little is known about its coloration mechanism. In this study, we first performed a feeding assay of S. ricini larvae using allopurinol, an inhibitor of xanthine oxidase, which catalyzes the degradation of xanthine to uric acid. This treatment induced a clear translucent integument phenotype, indicating that the larval color of S. ricini is also determined by uric acid accumulation. Next, to investigate the genetic basis that controls uric acid accumulation in S. ricini larvae, we isolated and characterized the S. ricini homolog of mammalian biogenesis of lysosome-related organelles complex 1, subunit 2 (BLOS2), which is known to play a crucial role in urate granule biosynthesis. We created a transcription activator-like effector nuclease (TALEN)-mediated gene knockout of S. ricini BLOS2 (SrBLOS2) and succeeded in establishing SrBLOS2 knockout strains (SrBLOS2KO). SrBLOS2KO mutants exhibited a translucent larval integument phenotype and lacked uric acid in the epidermis, as also observed in allopurinol-fed larvae. In addition, electron microscopy revealed that urate granules were rarely observed in the epidermis of SrBLOS2KO larvae, whereas abundant granules were found in the epidermis of wild-type larvae. These results clearly demonstrated that larval S. ricini accumulates uric acid as urate granules in the epidermis and that the genetic basis that controls uric acid accumulation is evolutionarily conserved in S. ricini and B. mori.
Collapse
|
19
|
Wang GY, Zhu JL, Zhou WW, Liu S, Khairul QM, Ansari NA, Zhu ZR. Identification and expression analysis of putative chemoreception genes from Cyrtorhinus lividipennis (Hemiptera: Miridae) antennal transcriptome. Sci Rep 2018; 8:12981. [PMID: 30154418 PMCID: PMC6113244 DOI: 10.1038/s41598-018-31294-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 11/09/2022] Open
Abstract
Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) is an important egg predator of planthoppers which are destructive rice pests. The chemosensory genes in the mirid antennae play important roles in mating and prey-seeking behaviors. To gain a better understanding of the olfaction of C. lividipennis, we sequenced the antennal transcriptomes of the predator to identify the key olfaction genes. We identified 18 odorant binding proteins (OBPs), 12 chemosensory proteins (CSPs), 1 Niemann-Pick C2 protein (NPC2), 15 odorant receptors (ORs), 6 ionotropic receptors (IRs), 3 gustatory receptors (GRs) and 3 sensory neuron membrane proteins (SNMPs). Quantitative real-time PCR results showed that the relative transcript levels of three ClivORs (ClivOR6, 7 and 14) in the female antennae were 3 to 6 folds higher than that in the male antennae, indicating these genes were more related to oviposition site selection. The relative transcript levels of ClivCSP8 and ClivOR11 were 2.6 and 2.7 times higher in the male antennae than that of the female, respectively, indicating that these genes might be involved in mate searching. Moreover, the responses of dsorco treated predators to volatiles emitted from infested rice were significantly reduced, indicating these volatiles might serve as crucial cues in the host searching of C. lividipennis.
Collapse
Affiliation(s)
- Gui-Yao Wang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing-Lei Zhu
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Su Liu
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Quais Md Khairul
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Naved Ahmad Ansari
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
20
|
Liu W, Jiang XC, Cao S, Yang B, Wang GR. Functional Studies of Sex Pheromone Receptors in Asian Corn Borer Ostrinia furnacalis. Front Physiol 2018; 9:591. [PMID: 29875691 PMCID: PMC5974041 DOI: 10.3389/fphys.2018.00591] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
Lepidopteran insects use sex pheromones for sexual communication. Pheromone receptors expressed on peripheral olfactory receptor neurons (ORNs) are critical part to detect the sex pheromones. In genus Ostrinia, several pheromone receptors were functional analyzed in O. nubilalis and O. scapulalis but the knowledge in O. furnacalis was rare. In this study, seven pheromone receptors were deorphanized by heterologous expression system of Xenopus oocytes. Functional types of sensilla trichoidea were classified by single sensillum recordings to interpret the response pattern of olfactory sensory neurons to Ostrinia pheromone components. OfurOR4 and OfurOR6 responded to the major sex pheromone Z/E12-14:OAc. OfurOR4 is the main receptor for both Z/E12-14:OAc and OfurOR6 mainly responded to E12-14:OAc. Functional differentiation of gene duplication were found between OfurOR5a and OfurOR5b. OfurOR5b showed a broad response to most of the pheromone components in O. furnacalis, whereas OfurOR5a was found without ligands. OfurOR7 showed a specific response to Z9-14:OAc and OfurOR8 mainly responded to Z11-14:OAc and E11-14:OAc. OfurOR3 did not respond to any pheromone components. Our results improved the current knowledge of pheromone reception in Ostrinia species which may contribute to speciation.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing-Chuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Banerjee TD, Monteiro A. CRISPR-Cas9 Mediated Genome Editing in Bicyclus anynana Butterflies. Methods Protoc 2018; 1:E16. [PMID: 31164559 PMCID: PMC6526417 DOI: 10.3390/mps1020016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/19/2023] Open
Abstract
CRISPR-Cas9 is revolutionizing the field of genome editing in non-model organisms. The robustness, ease of use, replicability and affordability of the technology has resulted in its widespread adoption among researchers. The African butterfly Bicyclus anynana is an emerging model lepidopteran species in the field of evo-devo, with a sequenced genome and amenable to germ line transformation. However, efficient genome editing tools to accelerate the pace of functional genetic research in this species have only recently become available with CRISPR-Cas9 technology. Here, we provide a detailed explanation of the CRISPR-Cas9 protocol we follow in the lab. The technique has been successfully implemented to knock-out genes associated with eyespot development and melanin pigmentation.
Collapse
Affiliation(s)
- Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
- Yale-NUS College, 10 College Avenue West, Singapore 138609, Singapore.
| |
Collapse
|
22
|
Coates BS, Dopman EB, Wanner KW, Sappington TW. Genomic mechanisms of sympatric ecological and sexual divergence in a model agricultural pest, the European corn borer. CURRENT OPINION IN INSECT SCIENCE 2018; 26:50-56. [PMID: 29764660 DOI: 10.1016/j.cois.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
The European corn borer, Ostrinia nubilalis, is a model species for elucidating mechanisms underlying adaptively differentiated subpopulations in the face of reciprocal gene flow, and is a major pest of cultivated maize in North America and Eurasia. Strains are characterized by different pheromone communication systems in combination with voltinism strains that are adapted to distinct local climate and photoperiod through adjustments in diapause traits. However, only partial barriers to inter-strain hybridization exist in areas of sympatry. Recent research shows that genes governing important strain-specific isolating traits are disproportionately located on the Z-chromosome. Furthermore, co-adapted combinations of some of these genes are non-recombining due to location within a large chromosomal inversion, and assist in maintaining strain integrity despite hybridization.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, United States.
| | - Erik B Dopman
- Tufts University, Department of Biology, Medford, MA, United States
| | - Kevin W Wanner
- Montana State University, Department of Plant Sciences and Plant Pathology, Bozeman, MT, United States
| | - Thomas W Sappington
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, United States
| |
Collapse
|
23
|
He P, Engsontia P, Chen GL, Yin Q, Wang J, Lu X, Zhang YN, Li ZQ, He M. Molecular characterization and evolution of a chemosensory receptor gene family in three notorious rice planthoppers, Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus, based on genome and transcriptome analyses. PEST MANAGEMENT SCIENCE 2018; 74:2156-2167. [PMID: 29542232 DOI: 10.1002/ps.4912] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 02/28/2024]
Abstract
BACKGROUND The white-backed planthopper (WBPH) Sogatella furcifera, the brown planthopper (BPH) Nilaparvata lugens, and the small brown planthopper (SBPH) Laodelphax striatellus (Hemiptera: Delphacidae) are rice pests that damage rice plants by sap-sucking and by transmitting viruses. Host-seeking behavior involves chemosensory receptor genes that include odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). RESULTS We used genome and transcriptome data to identify 141 ORs, 28 GRs and 25 IRs in BPH; 135 ORs, 18 GRs and 16 IRs in WBPH; and 37 ORs, 14 GRs and 6 IRs in SBPH. A phylogenetic analysis identified several specific OR clades of rice planthoppers, the results indicating that these OR members might be used to respond to specific host volatiles. OR co-receptor (Orco) is the most conserved and essential OR gene among these species and RNA interference (RNAi) can decrease their mRNA expression level to <50%. RNAi knockdown rice planthoppers were anosmia and were unable to seek or locate rice plants in behavioral tests. CONCLUSION The results demonstrate the importance of the planthopper Orco genes in locating rice plants. This information may aid in the development of RNAi-based transgenic rice and other pest management technologies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Patamarerk Engsontia
- Molecular Ecology and Evolution Research Unit, Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Guang-Lei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Qian Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu Province, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Xu Lu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, People's Republic of China
| | - Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| |
Collapse
|
24
|
Trible W, Olivos-Cisneros L, McKenzie SK, Saragosti J, Chang NC, Matthews BJ, Oxley PR, Kronauer DJC. orco Mutagenesis Causes Loss of Antennal Lobe Glomeruli and Impaired Social Behavior in Ants. Cell 2017; 170:727-735.e10. [PMID: 28802042 DOI: 10.1016/j.cell.2017.07.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 06/29/2017] [Indexed: 11/25/2022]
Abstract
Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Sean K McKenzie
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Saragosti
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Ni-Chen Chang
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 23930, USA
| | - Peter R Oxley
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
25
|
Ye ZF, Liu XL, Han Q, Liao H, Dong XT, Zhu GH, Dong SL. Functional characterization of PBP1 gene in Helicoverpa armigera (Lepidoptera: Noctuidae) by using the CRISPR/Cas9 system. Sci Rep 2017; 7:8470. [PMID: 28814748 PMCID: PMC5559583 DOI: 10.1038/s41598-017-08769-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/12/2017] [Indexed: 01/10/2023] Open
Abstract
Pheromone binding proteins (PBPs) are thought to play crucial roles in perception of the sex pheromones particularly in noctuid moths, but this is rarely in vivo evidenced due to lacking an effective technique. Here, we reported an in vivo functional study of PBP1 in the important lepidopteran pest Helicoverpa armigera (HarmPBP1), by using the CRISPR/Cas9 system. Efficient and heritable mutagenesis was achieved by egg injection of mixture of Cas9-mRNA and HarmPBP1-sgRNA. The TA cloning and sequencing revealed various insertion and/or deletion (indel) mutations at the target site. Among those, one mutation resulted in a premature stop codon at the target site, which led to a highly truncated protein with only 10 amino acids. The HarmPBP1 with this mutation would completely loss its function, and thus was used to select the homozygous mutant insects for functional analysis. The electroantennogram recording showed that the mutant male adults displayed severely impaired responses to all three sex pheromone components (Z11-16:Ald, Z9-16:Ald and Z9-14:Ald). Our study provides the first in vivo evidence that HarmPBP1 plays important role in perception of female sex pheromones, and also an effective methodology for using CRISPR/Cas9 system in functional genetic study in H. armigera as well as other insects.
Collapse
Affiliation(s)
- Zhan-Feng Ye
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Han
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liao
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Tong Dong
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guan-Heng Zhu
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Pest Management in Crops in Eastern China (Ministry of Agriculture of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Yan H, Opachaloemphan C, Mancini G, Yang H, Gallitto M, Mlejnek J, Leibholz A, Haight K, Ghaninia M, Huo L, Perry M, Slone J, Zhou X, Traficante M, Penick CA, Dolezal K, Gokhale K, Stevens K, Fetter-Pruneda I, Bonasio R, Zwiebel LJ, Berger SL, Liebig J, Reinberg D, Desplan C. An Engineered orco Mutation Produces Aberrant Social Behavior and Defective Neural Development in Ants. Cell 2017; 170:736-747.e9. [PMID: 28802043 PMCID: PMC5587193 DOI: 10.1016/j.cell.2017.06.051] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/25/2017] [Accepted: 06/30/2017] [Indexed: 02/01/2023]
Abstract
Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Giacomo Mancini
- Department of Biology, New York University, New York, NY 10003, USA
| | - Huan Yang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Matthew Gallitto
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Kevin Haight
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Majid Ghaninia
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Lucy Huo
- Department of Biology, New York University, New York, NY 10003, USA
| | - Michael Perry
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jesse Slone
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Maria Traficante
- Department of Biology, New York University, New York, NY 10003, USA
| | - Clint A Penick
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kelly Dolezal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kaustubh Gokhale
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kelsey Stevens
- Department of Biology, New York University, New York, NY 10003, USA
| | - Ingrid Fetter-Pruneda
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Roberto Bonasio
- Penn Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Shelley L Berger
- Penn Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
27
|
Liu Q, Liu W, Zeng B, Wang G, Hao D, Huang Y. Deletion of the Bombyx mori odorant receptor co-receptor (BmOrco) impairs olfactory sensitivity in silkworms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:58-67. [PMID: 28577927 DOI: 10.1016/j.ibmb.2017.05.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/20/2017] [Accepted: 05/29/2017] [Indexed: 05/14/2023]
Abstract
Olfaction plays an essential role in many important insect behaviors such as feeding and reproduction. To detect olfactory stimuli, an odorant receptor co-receptor (Orco) is required. In this study, we deleted the Orco gene in the Lepidopteran model insect, Bombyx mori, using a binary transgene-based clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system. We initially generated somatic mutations in two targeted sites, from which we obtained homozygous mutants with deletion of a 866 base pair sequence. Because of the flight inability of B. mori, we developed a novel method to examine the adult mating behavior. Considering the specialization in larval feeding, we examined food selection behavior in Orco somatic mutants by the walking trail analysis of silkworm position over time. Single sensillum recordings indicated that the antenna of the homozygous mutant was unable to respond to either of the two sex pheromones, bombykol or bombykal. An adult mating behavior assay revealed that the Orco mutant displayed a significantly impaired mating selection behavior in response to natural pheromone released by a wild-type female moth as well as an 11:1 mixture of bombykol/bombykal. The mutants also exhibited a decreased response to bombykol and, similar to wild-type moths, they displayed no response to bombykal. A larval feeding behavior assay revealed that the Orco mutant displayed defective selection for mulberry leaves and different concentrations of the volatile compound cis-jasmone found in mulberry leaves. Deletion of BmOrco severely disrupts the olfactory system, suggesting that BmOrco is indispensable in the olfactory pathway. The approach used for generating somatic and homozygous mutations also highlights a novel method for mutagenesis. This study on BmOrco function provides insights into the insect olfactory system and also provides a paradigm for agroforestry pest control.
Collapse
Affiliation(s)
- Qun Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
28
|
Li Y, Zhang J, Chen D, Yang P, Jiang F, Wang X, Kang L. CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:27-35. [PMID: 27744049 DOI: 10.1016/j.ibmb.2016.10.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 05/03/2023]
Abstract
Locusts are important agricultural pests worldwide and regarded as study models for entomology. However, the absence of targeted gene manipulation systems for locusts has restricted their applications for research. Herein, we report the successful use of the CRISPR/Cas9 system to induce a targeted heritable mutagenesis of the migratory locust, Locusta migratoria. The target sequence of gRNA was designed to disrupt the gene encoding the odorant receptor co-receptor (Orco) and examine the roles of the odorant receptor pathway in the locust. Microinjection of the mixture of Cas9-mRNA and Orco-gRNA into the locust eggs resulted in efficient target-gene editing at a rate of 71.7% in G0 animals and achieved a germline efficiency of up to 88.1% in G1 animals. By a crossing strategy, we successfully established stable Orco mutant lines. EAGs and SSRs indicated that the fourth-instar nymphs of the Orco mutants showed severely impaired electrophysiological responses to multiple odors. The Orco mutant locusts lost an attraction response to aggregation pheromones under the crowding conditions. The locomotor activity and body coloration of the Orco mutant locusts did not significantly differ from those of the two other genotypes. This study provides an easy and effective approach by using the CRISPR/Cas9 system for generating loss-of-function mutants for functional genetic studies of locusts and for managing insect pests.
Collapse
Affiliation(s)
- Yan Li
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Dafeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengcheng Yang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Jiang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Le Kang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|