1
|
Xu S, Zhang X, Wang Y, Han R, Miao X, Li H, Guan R. Targets selection and field evaluation of an RNA biopesticide to control Phyllotreta striolata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106330. [PMID: 40082027 DOI: 10.1016/j.pestbp.2025.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Phyllotreta striolata is a major insect pest that threatens vegetable crops worldwide. Recently, its increasing resistance to chemical pesticides underscores the urgent need for novel control strategies. This study explores the potential of RNA biopesticides for managing P. striolata infestations. Transcriptome sequencing of P. striolata generated 42,779 unigenes, which were subsequently compared with genes known to cause 100 % lethality to Tribolium castaneum in the iBeetle database. Forty-eight candidate RNAi target genes were identified, from which six genes-PsHsc70-3, Psfkh, PsRpn11, PsRpt3, Psncm, and PsCoatβ-were selected for further bioassays. Laboratory results indicated that two of these genes, PsRpt3 and PsCoatβ, achieved a 7-day lethality rate exceeding 60 %. These genes were then combined in equal proportions and incorporated into the dsRNA stabilizer MLG01 to form an RNA biopesticide, Ger@dsRNA, for field trials. The initial field trial, conducted in Zhuanghang, Shanghai, showed a 7-day control efficacy of 82.55 ± 6.80 % and 89.11 ± 7.12 % at dsRNA concentrations of 0.1 g/L and 0.5 g/L, respectively. Subsequent field trials in Guangzhou (2022) and Shanghai (2024) yielded similar control effects. This study provides a comprehensive process for the rapid screening of target genes and the development of RNA biopesticides, demonstrating that Ger@dsRNA offers robust preventive efficacy against P. striolata, representing a promising new approach for pest management.
Collapse
Affiliation(s)
- Saibo Xu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuezhi Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinuo Wang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Han
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Haichao Li
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China.
| | - Ruobing Guan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Wang W, Zhu T, Wan P, Wei Q, He J, Lai F, Fu Q. SPARC plays an important role in the oviposition and nymphal development in Nilaparvata lugens Stål. BMC Genomics 2022; 23:682. [PMID: 36192692 PMCID: PMC9531499 DOI: 10.1186/s12864-022-08903-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The brown planthopper (Nilaparvata lugens Stål)is a notorious rice pest in many areas of Asia. Study on the molecular mechanisms underlying its development and reproduction will provide scientific basis for effective control. SPARC (Secreted Protein, Acidic and Rich in Cysteine) is one of structural component of the extracellular matrix, which influences a diverse array of biological functions. In this study, the gene for SPARC was identified and functionally analysed from N.lugens. Results The result showed that the NlSPARC mRNA was highly expressed in fat body, hemolymph and early embryo. The mortality increased significantly when NlSPARC was downregulated after RNA interference (RNAi) in 3 ~ 4th instar nymphs. Downregulation of NlSPARC in adults significantly reduced the number of eggs and offspring, as well as the transcription level of NlSPARC in newly hatched nymphs and survival rate in progeny. The observation with microanatomy on individuals after NlSPARC RNAi showed smaller and less abundant fat body than that in control. No obvious morphological abnormalities in the nymphal development and no differences in development of internal reproductive organ were observed when compared with control. Conclusion NlSPARC is required for oviposition and nymphal development mainly through regulating the tissue of fat body in N.lugens. NlSPARC could be a new candidate target for controlling the rapid propagation of N.lugens population. Our results also demonstrated that the effect of NlSPARC RNAi can transfer to the next generation in N.lugens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08903-z.
Collapse
Affiliation(s)
- Weixia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Pinjun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qi Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiachun He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fengxiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Niu L, Yan H, Sun Y, Zhang D, Ma W, Lin Y. Nanoparticle facilitated stacked-dsRNA improves suppression of the Lepidoperan pest Chilo suppresallis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105183. [PMID: 36127045 DOI: 10.1016/j.pestbp.2022.105183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, gene knockdown technology using double-stranded RNA (dsRNA) has been widely used as an environment-friendly pest control strategy, but its instability and limited cellular uptake have limited its overall effect. Studies have shown that the efficiency of single dsRNA can be improved by using various nanomaterials. However, the effect of stacked-dsRNA wrapped by nanomaterial on pests remains unclear. In the present study, both CYP15C1 and C-factor genes were cloned from the midgut of C. suppressalis, and the transcript of C-factor is most highly expressed in heads. Feeding a dsCYP15C1 or dsC-factor - nanomaterial mixture can downregulate the gene expression and significantly increase larval mortality. More importantly, feeding the stacked-dsRNA wrapped by nanomaterial can significantly increase the mortality of C. suppressalis, compared with feeding dsCYP15C1 or dsC-factor - nanomaterial mixture alone. These results showed that CYP15C1 and C-factor could be potential targets for an effective management of C. suppressalis, and we developed a nanoparticle-facilitated stacked-dsRNA strategy in the control of C. suppresallis. Our research provides a theoretical basis for gene function analysis and field pest control, and will promote the application of RNAi technology in the stacked style of pest control.
Collapse
Affiliation(s)
- Lin Niu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haixia Yan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - Yajie Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| |
Collapse
|
4
|
Souza D, Christensen SA, Wu K, Buss L, Kleckner K, Darrisaw C, Shirk PD, Siegfried BD. RNAi-induced knockdown of white gene in the southern green stink bug (Nezara viridula L.). Sci Rep 2022; 12:10396. [PMID: 35729244 PMCID: PMC9213411 DOI: 10.1038/s41598-022-14620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
The southern green stink bug (SGSB) Nezara viridula L. is one of the most common stink bug species in the United States and can cause significant yield loss in a variety of crops. A suitable marker for the assessment of gene-editing tools in SGSB has yet to be characterized. The white gene, first documented in Drosophila, has been a useful target to assess the efficiency of introduced mutations in many species as it controls pigmentation processes and mutants display readily identifiable phenotypes. In this study we used the RNAi technique to investigate functions and phenotypes associated with the white ortholog in the SGSB and to validate white as a marker for genetic transformation in this species. This study revealed that white may be a suitable marker for germline transformation in the SGSB as white transcript knockdown was not lethal, did not impair embryo development and provided a distinguishable phenotype. Our results demonstrated that the white ortholog in SGSB is involved in the pathway for ommochrome synthesis and suggested additional functions of this gene such as in the integument composition, management of hemolymph compounds and riboflavin mobilization.
Collapse
Affiliation(s)
- Dariane Souza
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA. .,Syngenta Crop Protection AG, WST-540.1.17 Schaffhauserstrasse, 4332, Stein, Switzerland.
| | - Shawn A Christensen
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, 32608, USA
| | - Ke Wu
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Lyle Buss
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Kaylin Kleckner
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Constance Darrisaw
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Paul D Shirk
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, 32608, USA
| | - Blair D Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| |
Collapse
|
5
|
Wei Q, Zhu XH, Wan PJ, He JC, Wang WX, Lai FX, Fu Q. Knockdown of the chromatin remodeling ATPase gene Brahma impairs the reproductive potential of the brown planthopper, Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105106. [PMID: 35715045 DOI: 10.1016/j.pestbp.2022.105106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most destructive pests in rice-growing regions of Asia. Extensive studies have suggested that SWI/SNF chromatin remodeling ATPase Brahma (BRM) plays multiple roles in the insect model Drosophila. Yet much less is known about the physiological properties for NlBRM. In the present study, the cloned full-length cDNA of NlBRM was 5637 bp and contained an ORF of 5292 bp encoding a 194.53 kD protein. The spatiotemporal dynamics of NlBRM was investigated by qPCR, which showed that it was abundantly expressed in the egg and ovary. Then significant downregulation of NlBRM by dsRNA injection had a relatively greater impact on female survival than male. Moreover, the number of oviposition marks of the NlBRM-RNAi females were declined by 61.11% - 73.33% compared with the controls during the subsequent 5 days after dsRNA injection. Meanwhile, the number of newly hatched BPH nymphs also decreased correspondingly by 93.56% - 100%. Phenotypic analysis revealed that none of normally banana-shaped eggs were discernable in the ovaries of NlBRM-deficient females, where mRNA expression of N. lugens vitellogenin gene was also reduced. Our results demonstrated that NlBRM played a crucial role in ovarian development and fecundity of BPH, likely by regulating the vitellogenin gene in vivo, which could be as a promising target for parental RNAi-based control of this serious rice pest.
Collapse
Affiliation(s)
- Qi Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xu-Hui Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jia-Chun He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wei-Xia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Feng-Xiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| |
Collapse
|
6
|
Chromatin-Remodelling ATPases ISWI and BRM Are Essential for Reproduction in the Destructive Pest Tuta absoluta. Int J Mol Sci 2022; 23:ijms23063267. [PMID: 35328688 PMCID: PMC8951242 DOI: 10.3390/ijms23063267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The tomato leaf miner (Tuta absoluta) is one of the top 20 plant pests worldwide. We cloned and identified the chromatin-remodelling ATPase genes ISWI and BRM by RACE and bioinformatic analysis, respectively; used RT-qPCR to examine their expression patterns during different life cycle stages; and elucidated their roles in insect reproduction using double-stranded RNA injections. The full-length cDNA of TaISWI was 3428 bp and it encoded a 1025-aa polypeptide. The partial-length cDNA of TaBRM was 3457 bp and it encoded a 1030-aa polypeptide. TaISWI and TaBRM were upregulated at the egg stage. Injection of TaISWI or TaBRM dsRNA at the late pupa stage significantly inhibited adult ovary development and reduced fecundity, hatchability, and longevity in the adult females. To the best of our knowledge, the present study was the first to perform molecular characterisations of two chromatin-remodelling ATPase genes and clarify their roles in T. absoluta fecundity. Chromatin-remodelling ATPases are potential RNAi targets for the control of T. absoluta and other insect pests. The present study was also the first to demonstrate the feasibility of reproductive inhibitory RNAi as a putative approach for the suppression of T. absoluta and other Lepidopteran insect populations.
Collapse
|
7
|
Glucosamine-6-phosphate N-acetyltransferase gene silencing by parental RNA interference in rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Sci Rep 2022; 12:2141. [PMID: 35136178 PMCID: PMC8825807 DOI: 10.1038/s41598-022-06193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
Parental RNAi (pRNAi) is a response of RNA interference in which treated insect pests progenies showed a gene silencing phenotypes. pRNAi of CmGNA gene has been studied in Cnaphalocrocis medinalis via injection. Our results showed significant reduction in ovulation per female that was 26% and 35.26% in G1 and G2 generations, respectively. Significant reduction of hatched eggs per female were observed 23.53% and 45.26% as compared to control in G1–G2 generations, respectively. We also observed the significant variation in the sex ratio between female (40% and 53%) in G1–G2 generations, and in male (65%) in G1 generation as compared to control. Our results also demonstrated the significant larval mortality (63% and 55%) and pupal mortality (55% and 41%), and significant reduction of mRNA expression level in G1 and G2 generations. Our findings have confirmed that effectiveness of pRNAi induced silencing on the CmGNA target gene in G1–G2 generations of C. medinalis. These results suggested the potential role of pRNAi in insect pest resistance management strategies.
Collapse
|
8
|
Darlington M, Reinders JD, Sethi A, Lu AL, Ramaseshadri P, Fischer JR, Boeckman CJ, Petrick JS, Roper JM, Narva KE, Vélez AM. RNAi for Western Corn Rootworm Management: Lessons Learned, Challenges, and Future Directions. INSECTS 2022; 13:57. [PMID: 35055900 PMCID: PMC8779393 DOI: 10.3390/insects13010057] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is considered one of the most economically important pests of maize (Zea mays L.) in the United States (U.S.) Corn Belt with costs of management and yield losses exceeding USD ~1-2 billion annually. WCR management has proven challenging given the ability of this insect to evolve resistance to multiple management strategies including synthetic insecticides, cultural practices, and plant-incorporated protectants, generating a constant need to develop new management tools. One of the most recent developments is maize expressing double-stranded hairpin RNA structures targeting housekeeping genes, which triggers an RNA interference (RNAi) response and eventually leads to insect death. Following the first description of in planta RNAi in 2007, traits targeting multiple genes have been explored. In June 2017, the U.S. Environmental Protection Agency approved the first in planta RNAi product against insects for commercial use. This product expresses a dsRNA targeting the WCR snf7 gene in combination with Bt proteins (Cry3Bb1 and Cry34Ab1/Cry35Ab1) to improve trait durability and will be introduced for commercial use in 2022.
Collapse
Affiliation(s)
- Molly Darlington
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Jordan D. Reinders
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Amit Sethi
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Albert L. Lu
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Joshua R. Fischer
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Chad J. Boeckman
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Jay S. Petrick
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Jason M. Roper
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Ana M. Vélez
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| |
Collapse
|
9
|
Yan S, Ren BY, Shen J. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. INSECT SCIENCE 2021; 28:21-34. [PMID: 32478473 DOI: 10.1111/1744-7917.12822] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 05/13/2020] [Indexed: 05/10/2023]
Abstract
RNA interference (RNAi) targeting lethal genes in insects has great potential for sustainable crop protection. Compared with traditional double-stranded (ds)RNA delivery systems, nanoparticles such as chitosan, liposomes, and cationic dendrimers offer advantages in delivering dsRNA/small interfering (si)RNA to improve RNAi efficiency, thus promoting the development and practice of RNAi-based pest management strategies. Here, we illustrate the limitations of traditional dsRNA delivery systems, reveal the mechanism of nanoparticle-mediated RNAi, summarize the recent progress and successful applications of nanoparticle-mediated RNAi in pest management, and finally address the prospects of nanoparticle-based RNA pesticides.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Bin-Yuan Ren
- National Agricultural Technology Extension and Service Center, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Cagliari D, Taning CNT, Christiaens O, De Schutter K, Lewille B, Dewettinck K, Zotti M, Smagghe G. Parental RNA interference as a tool to study genes involved in rostrum development in the Neotropical brown stink bug, Euschistus heros. JOURNAL OF INSECT PHYSIOLOGY 2021; 128:104161. [PMID: 33188778 DOI: 10.1016/j.jinsphys.2020.104161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
In insects, the identity of body segments is controlled by homeotic genes and the knockdown of these genes during embryogenesis can lead to an abnormal development and/or atypical phenotypes. The main goal of this study was to investigate the involvement of labial (lab), deformed (dfd), sex comb reduced (scr), extradenticle (exd) and proboscipedia (pb) in rostrum development in the Neotropical brown stink bug Euschistus heros, using parental RNAi (pRNAi). To achieve this objective, 10-days-old adult females were first microinjected with double-stranded RNAs (dsRNA) targeting these five genes. Then, the number of eggs laid per female, the percentage of hatched nymphs with normal or abnormal phenotype and target gene silencing were evaluated. Except for the dsDfd-treatment, the number of eggs laid per female per day was not affected by the different dsRNA-treatments compared to the control (dsGFP). However, treatment with either dsLab, dsDfd, dsScr or dsExd caused a strong reduction in egg hatching. The dsExd-treatment caused no apparent change in phenotype in the nymphs while hatched nymphs from the dsDfd, dsScr and dsPb-treatment showed abnormalities in the rostrum. Particularly for the dsPb-treatment, 91% of the offspring displayed a bifurcated rostrum with a leg-like structure. Overall, these results indicate that these five genes are involved in E. heros embryonic development and that the knockdown of dfd, scr and pb leads to an abnormal development of the rostrum. Additionally, this study demonstrates the efficiency of pRNAi in studying genes involved in embryogenesis in E. heros, with clear phenotypes and a strong target gene silencing in the next generation, after treatment of the parent female adult with gene-specific dsRNA.
Collapse
Affiliation(s)
- Deise Cagliari
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Crop Protection, Molecular Entomology Laboratory, Federal University of Pelotas, Pelotas, Brazil.
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Benny Lewille
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Dewettinck
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Moises Zotti
- Department of Crop Protection, Molecular Entomology Laboratory, Federal University of Pelotas, Pelotas, Brazil
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Jain RG, Robinson KE, Fletcher SJ, Mitter N. RNAi-Based Functional Genomics in Hemiptera. INSECTS 2020; 11:E557. [PMID: 32825516 PMCID: PMC7564473 DOI: 10.3390/insects11090557] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023]
Abstract
RNA interference (RNAi) is a powerful approach for sequence-specific gene silencing, displaying tremendous potential for functional genomics studies in hemipteran insects. Exploiting RNAi allows the biological roles of critical genes to be defined and aids the development of RNAi-based biopesticides. In this review, we provide context to the rapidly expanding field of RNAi-based functional genomics studies in hemipteran insects. We highlight the most widely used RNAi delivery strategies, including microinjection, oral ingestion and topical application. Additionally, we discuss the key variables affecting RNAi efficacy in hemipteran insects, including insect life-stage, gene selection, the presence of nucleases, and the role of core RNAi machinery. In conclusion, we summarise the application of RNAi in functional genomics studies in Hemiptera, focusing on genes involved in reproduction, behaviour, metabolism, immunity and chemical resistance across 33 species belonging to 14 families.
Collapse
Affiliation(s)
| | - Karl E. Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane 4072, Queensland, Australia; (R.G.J.); (S.J.F.); (N.M.)
| | | | | |
Collapse
|
12
|
Vélez AM, Fishilevich E, Rangasamy M, Khajuria C, McCaskill DG, Pereira AE, Gandra P, Frey ML, Worden SE, Whitlock SL, Lo W, Schnelle KD, Lutz JR, Narva KE, Siegfried BD. Control of western corn rootworm via RNAi traits in maize: lethal and sublethal effects of Sec23 dsRNA. PEST MANAGEMENT SCIENCE 2020; 76:1500-1512. [PMID: 31677217 DOI: 10.1002/ps.5666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm (WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. RESULTS Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0 maize events carrying rootworm Sec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25 in diet bioassays. CONCLUSION We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25 , suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana M Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Elane Fishilevich
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Corteva Agriscience, Indianapolis, IN, USA
| | | | - Chitvan Khajuria
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Adriano E Pereira
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | | - Wendy Lo
- Corteva Agriscience, Indianapolis, IN, USA
| | | | | | | | - Blair D Siegfried
- Entomology and Nematology Department, Charles Steinmetz Hall, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Cagliari D, Dias NP, Dos Santos EÁ, Rickes LN, Kremer FS, Farias JR, Lenz G, Galdeano DM, Garcia FRM, Smagghe G, Zotti MJ. First transcriptome of the Neotropical pest Euschistus heros (Hemiptera: Pentatomidae) with dissection of its siRNA machinery. Sci Rep 2020; 10:4856. [PMID: 32184426 PMCID: PMC7078254 DOI: 10.1038/s41598-020-60078-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
Over the past few years, the use of RNA interference (RNAi) for insect pest management has attracted considerable interest in academia and industry as a pest-specific and environment-friendly strategy for pest control. For the success of this technique, the presence of core RNAi genes and a functional silencing machinery is essential. Therefore, the aim of this study was to test whether the Neotropical brown stinkbug Euschistus heros has the main RNAi core genes and whether the supply of dsRNA could generate an efficient gene silencing response. To do this, total mRNA of all developmental stages was sequenced on an Illumina platform, followed by a de novo assembly, gene annotation and RNAi-related gene identification. Once RNAi-related genes were identified, nuclease activities in hemolymph were investigated through an ex vivo assay. To test the functionality of the siRNA machinery, E. heros adults were microinjected with ~28 ng per mg of insect of a dsRNA targeting the V-ATPase-A gene. Mortality, relative transcript levels of V-ATPase-A, and the expression of the genes involved in the siRNA machinery, Dicer-2 (DCR-2) and Argonaute 2 (AGO-2), were analyzed. Transcriptome sequencing generated more than 126 million sequenced reads, and these were annotated in approximately 80,000 contigs. The search of RNAi-related genes resulted in 47 genes involved in the three major RNAi pathways, with the absence of sid-like homologous. Although ex vivo incubation of dsRNA in E. heros hemolymph showed rapid degradation, there was 35% mortality at 4 days after treatment and a significant reduction in V-ATPase-A gene expression. These results indicated that although sid-like genes are lacking, the dsRNA uptake mechanism was very efficient. Also, 2-fold and 4-fold overexpression of DCR-2 and AGO-2, respectively, after dsRNA supply indicated the activation of the siRNA machinery. Consequently, E. heros has proven to be sensitive to RNAi upon injection of dsRNA into its hemocoel. We believe that this finding together with a publically available transcriptome and the validation of a responsive RNAi machinery provide a starting point for future field applications against one of the most important soybean pests in South America.
Collapse
Affiliation(s)
- Deise Cagliari
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil.
- Department of Plants and Crops, Ghent University, Ghent, Belgium.
| | - Naymã Pinto Dias
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Ericmar Ávila Dos Santos
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Leticia Neutzling Rickes
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Frederico Schmitt Kremer
- Center for Technological Development, Bioinformatics and Proteomics Laboratory, Federal University of Pelotas, Pelotas, Brazil
| | - Juliano Ricardo Farias
- Department of Crop Protection, Universidade Regional Integrada do Alto Uruguai, Santo Ângelo, Brazil
| | - Giuvan Lenz
- Agricultural Research and Development Center, UPL, Pereiras, Brazil
| | - Diogo Manzano Galdeano
- Sylvio Moreira Citrus Center, Agronomic Institute of Campinas, Cordeirópolis, São Paulo, Brazil
| | | | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium.
| | - Moisés João Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil.
| |
Collapse
|
14
|
Basu S, Pereira AE, Pinheiro DH, Wang H, Valencia-Jiménez A, Siegfried BD, Louis J, Zhou X'J, Vélez AM. Evaluation of reference genes for real-time quantitative PCR analysis in southern corn rootworm, Diabrotica undecimpunctata howardi (Barber). Sci Rep 2019; 9:10703. [PMID: 31341190 PMCID: PMC6656754 DOI: 10.1038/s41598-019-47020-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Quantitative reverse transcription PCR (RT-qPCR) is one of the most efficient, reliable and widely used techniques to quantify gene expression. In this study, we evaluated the performance of six southern corn rootworm, Diabrotica undecimpunctata howardi (Barber), housekeeping genes (HKG), β-actin (Actin), β-tubulin (Tubulin), elongation factor 1 alpha (EF1α), glyceraldehyde-3 phosphate dehydrogenase (GAPDH), 40 S ribosomal protein S9 (RpS9) and ubiquitin-conjugating protein (Ubi), under different experimental conditions such as developmental stage, exposure of neonate and adults to dsRNA, exposure of adults to different temperatures, different 3rd instar larva tissues, and neonate starvation. The HKGs were analyzed with four algorithms, including geNorm, NormFinder, BestKeeper, and delta-CT. Although the six HKGs showed a relatively stable expression pattern among different treatments, some variability was observed. Among the six genes, EF1α exhibited the lowest Ct values for all treatments while Ubi exhibited the highest. Among life stages and across treatments, Ubi exhibited the least stable expression pattern. GAPDH, Actin, and EF1α were among the most stable HKGs in the majority of the treatments. This research provides HKG for accurate normalization of RT-qPCR data in the southern corn rootworm. Furthermore, this information can contribute to future genomic and functional genomic research in Diabrotica species.
Collapse
Affiliation(s)
- Saumik Basu
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Department of Entomology, Washington State University, Pullman, WA, 99164, USA
| | - Adriano E Pereira
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA. .,Plant Genetics Research Unit, USDA/ARS, University of Missouri-Columbia, Columbia, MO, 65211-7020, USA.
| | | | - Haichuan Wang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583-0915, USA
| | | | - Blair D Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611-0620, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Xuguo 'Joe' Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA
| | - Ana Maria Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
15
|
Pereira AE, Tenhumberg B, Meinke LJ, Siegfried BD. Southern Corn Rootworm (Coleoptera: Chrysomelidae) Adult Emergence and Population Growth Assessment After Selection With Vacuolar ATPase-A double-stranded RNA Over Multiple Generations. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1354-1364. [PMID: 30753514 DOI: 10.1093/jee/toz008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Indexed: 06/09/2023]
Abstract
The southern corn rootworm, Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae), was exposed over multiple generations to vacuolar (v)ATPase-A double-stranded (ds)RNA, first as adults and later, as neonate larvae. During adult selection, high mortality and lower fecundity were observed in the RNAi-selected cages after beetles were exposed to sublethal dsRNA concentrations that varied between LC40 and LC75. During larval selection, a delay in adult emergence and effects on population growth parameters were observed after neonates were exposed to sublethal dsRNA concentrations that varied between LC50 and LC70. Some of the parameters measured for adult emergence such as time to reach maximum linear adult emergence, time elapsed before attaining linear emergence, termination point of the linear emergence, and total days of linear emergence increase, were significantly different between RNAi-selected and control colonies for at least one generation. Significant differences were also observed in population growth parameters such as growth rate, net reproductive rate, doubling time, and generation time. After seven generations of selection, there was no indication that resistance evolved. The sublethal effects caused by exposures of southern corn rootworm to dsRNAs can affect important life history traits and fitness especially through delays in adult emergence and reduction in population growth. Although changes in susceptibility did not occur, the observation of sublethal effects suggests important responses to potential selection pressure. Assuming resistance involves a recessive trait, random mating between susceptible and resistant individuals is an important factor that allows sustainable use of transgenic plants, and delays in adult emergence observed in our studies could potentially compromise this assumption.
Collapse
Affiliation(s)
- Adriano E Pereira
- Plant Genetics Research Unit, USDA/ARS, University of Missouri, Columbia, MO
| | - Brigitte Tenhumberg
- School of Biological Sciences and Department of Mathematics, University of Nebraska, Lincoln, NE
| | - Lance J Meinke
- Department of Entomology, University of Nebraska, Lincoln, NE
| | - Blair D Siegfried
- Department of Entomology and Nematology, University of Florida, Gainesville, FL
| |
Collapse
|
16
|
Castellanos NL, Smagghe G, Sharma R, Oliveira EE, Christiaens O. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. PEST MANAGEMENT SCIENCE 2019; 75:537-548. [PMID: 30094917 DOI: 10.1002/ps.5167] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The Neotropical stink bug Euschistus heros is a major pest in soybean fields. Development of highly species-specific pesticides based on RNA interference (RNAi) could provide a new sustainable and environmentally friendly control strategy. RESULTS Here, the potential of RNAi as a pest control tool against E. heros was assessed. First, target gene selection using a microinjection approach was performed. Seven of the 15 candidate genes tested exhibited > 95% mortality after hemolymph injection of 27.5 ng dsRNA. Subsequently, dsRNA was administered orally using different formulations: naked dsRNA, liposome-encapsulated-dsRNA and dsRNA formulated with EDTA. Liposome-encapsulated dsRNA targeting vATPase A and muscle actin led to significant mortality after 14 days (45% and 42%, respectively), whereas EDTA-formulated dsRNA did so for only one of the target genes. Ex vivo analysis of the dsRNA stability in collected saliva indicated a strong dsRNA-degrading capacity by E. heros saliva, which could explain the need for dsRNA formulations. CONCLUSION The results demonstrate that continuous ingestion of dsRNA with EDTA or liposome-encapsulated dsRNA can prevent dsRNA from being degraded enzymatically and suggest great potential for using these formulations in dsRNA delivery to use RNAi as a functional genomics tool or for pest management of stink bugs. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nathaly L Castellanos
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rohit Sharma
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Basnet S, Kamble ST. Silencing of Four Genes Involved in Chromatin Remodeling by RNA Interference Adversely Affects Fecundity of Bed Bugs (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1440-1445. [PMID: 30010946 DOI: 10.1093/jme/tjy112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Indexed: 06/08/2023]
Abstract
DNA, the blue print of life, is densely wrapped around histone proteins to form chromatin. Chromatin remodeling ATPases unwind histone-DNA interactions to facilitate DNA transcription, modification, and repair. Four genes involved in chromatin remodeling, namely, imitation SWI (iswi), chromodomain-helicase-DNA-binding protein 1 (chd-1), DNA helicase INO80 (ino80) and mi-2 were silenced through the injection of dsRNA, and phenotypes were assessed in bed bugs. Bed bugs were injected with 0.2 µg dsRNA per insect between the last thoracic segment and first abdominal segment using a fine capillary tube fitted to a nanoinjector. We observed a significant reduction in reproductive potential with all the genes tested, suggesting the essential function of chromatin remodeling ATPases in many cellular processes including egg-laying and egg-hatching. Knockdown of mi-2 and iswi completely inhibited oviposition over time. Real-time quantitative polymerase chain reaction confirmed significant knockdown of targeted mRNAs for at least 30 d, which supports persistence of RNAi in bed bugs. In addition, we observed a significant depletion of targeted transcripts in eggs laid by bed bugs injected with dsRNAs specific to chromatin remodeling ATPases. This study demonstrates the importance of chromatin remodeling ATPase in bed bug reproduction.
Collapse
Affiliation(s)
- Sanjay Basnet
- Department of Entomology, University of Nebraska, Lincoln, NE
| | | |
Collapse
|
18
|
Ran R, Li T, Liu X, Ni H, Li W, Meng F. RNA interference-mediated silencing of genes involved in the immune responses of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Olethreutidae). PeerJ 2018; 6:e4931. [PMID: 29910977 PMCID: PMC6003399 DOI: 10.7717/peerj.4931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/17/2018] [Indexed: 02/03/2023] Open
Abstract
RNA interference (RNAi) technology may be useful for developing new crop protection strategies against the soybean pod borer (SPB; Leguminivora glycinivorella), which is a critical soybean pest in northeastern Asia. Immune-related genes have been recently identified as potential RNAi targets for controlling insects. However, little is known about these genes or mechanisms underlying their expression in the SPB. In this study, we completed a transcriptome-wide analysis of SPB immune-related genes. We identified 41 genes associated with SPB microbial recognition proteins, immune-related effectors or signalling molecules in immune response pathways (e.g., Toll and immune deficiency pathways). Eleven of these genes were selected for a double-stranded RNA artificial feeding assay. The down-regulated expression levels of LgToll-5-1a and LgPGRP-LB2a resulted in relatively high larval mortality rates and abnormal development. Our data represent a comprehensive genetic resource for immune-related SPB genes, and may contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera species. Furthermore, two immune-related SPB genes were identified as potential RNAi targets, which may be used in the development of RNAi-mediated SPB control methods.
Collapse
Affiliation(s)
- Ruixue Ran
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianyu Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xinxin Liu
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hejia Ni
- Colleges of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Khajuria C, Ivashuta S, Wiggins E, Flagel L, Moar W, Pleau M, Miller K, Zhang Y, Ramaseshadri P, Jiang C, Hodge T, Jensen P, Chen M, Gowda A, McNulty B, Vazquez C, Bolognesi R, Haas J, Head G, Clark T. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One 2018; 13:e0197059. [PMID: 29758046 PMCID: PMC5951553 DOI: 10.1371/journal.pone.0197059] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/25/2018] [Indexed: 01/10/2023] Open
Abstract
The use of dsRNA to control insect pests via the RNA interference (RNAi) pathway is being explored by researchers globally. However, with every new class of insect control compounds, the evolution of insect resistance needs to be considered, and understanding resistance mechanisms is essential in designing durable technologies and effective resistance management strategies. To gain insight into insect resistance to dsRNA, a field screen with subsequent laboratory selection was used to establish a population of DvSnf7 dsRNA-resistant western corn rootworm, Diabrotica virgifera virgifera, a major maize insect pest. WCR resistant to ingested DvSnf7 dsRNA had impaired luminal uptake and resistance was not DvSnf7 dsRNA-specific, as indicated by cross resistance to all other dsRNAs tested. No resistance to the Bacillus thuringiensis Cry3Bb1 protein was observed. DvSnf7 dsRNA resistance was inherited recessively, located on a single locus, and autosomal. Together these findings will provide insights for dsRNA deployment for insect pest control.
Collapse
Affiliation(s)
- Chitvan Khajuria
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
- * E-mail:
| | - Sergey Ivashuta
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Elizabeth Wiggins
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Lex Flagel
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - William Moar
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Michael Pleau
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Kaylee Miller
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Yuanji Zhang
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | | | - Changjian Jiang
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Tracey Hodge
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Peter Jensen
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Mao Chen
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Anilkumar Gowda
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Brian McNulty
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Cara Vazquez
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Renata Bolognesi
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Jeffrey Haas
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Graham Head
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| | - Thomas Clark
- Monsanto Co., 700 Chesterfield Parkway West, Chesterfield, Missouri, United States of America
| |
Collapse
|
20
|
Basnet S, Kamble ST. Knockdown of the Chromatin Remodeling Gene Brahma by RNA Interference Reduces Reproductive Fitness and Lifespan in Common Bed Bug (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:534-539. [PMID: 29272428 DOI: 10.1093/jme/tjx234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae) is a nuisance household pest causing significant medical and economic impacts. RNA interference (RNAi) of genes that are involved in vital physiological processes can serve as potential RNAi targets for insect control. Brahma is an ATPase subunit of a chromatin-remodeling complex involved in transcription of several genes for cellular processes, most importantly the homeotic genes. In this study, we used a microinjection technique to deliver double stranded RNA into female bed bugs. Delivery of 0.05 and 0.5 µg/insect of brahma dsRNA directly into hemocele resulted substantial reduction in oviposition. Eggs laid by bed bugs receiving both doses of brahma dsRNA exhibited significantly lower hatching percentage as compared to controls. In addition, brahma RNAi in female bed bugs caused significant mortality. Our results disclosed the potential of brahma RNAi to suppress bed bug population through injection of specific dsRNA, suggesting a critical function of this gene in bed bugs' reproduction and survival. Based on our data, brahma can be a promising RNAi target for suppression of bed bug population.
Collapse
Affiliation(s)
- Sanjay Basnet
- Department of Entomology, University of Nebraska, Lincoln
| | | |
Collapse
|
21
|
Basnet S, Kamble ST. RNA Interference of the Muscle Actin Gene in Bed Bugs: Exploring Injection Versus Topical Application for dsRNA Delivery. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4999034. [PMID: 29788394 PMCID: PMC5961172 DOI: 10.1093/jisesa/iey045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Bed bugs are one the most troublesome household pests that feed primarily on human blood. RNA interference (RNAi) is currently being pursued as a potential tool for insect population management and has shown efficacy against some phytophagous insects. We evaluated the different techniques to deliver dsRNA specific to bed bug muscle actin (dsactin) into bed bugs. Initially, stability of dsRNA in human blood was studied to evaluate the feasibility of feeding method. Adult bed bugs were injected with dsRNA between last thoracic segment and first abdominal segment on the ventral side, with a dose of 0.2 µg dsactin per insect. In addition to injection, dsactin was mixed in acetone and treated topically in the abdomens of fifth stage nymphs. We found the quick degradation of dsRNA in blood. Injection of dsactin caused significant depletion of actin transcripts and substantial reduction in oviposition and lethality in female adults. Topically treated dsRNA in fifth stage nymphs had no effect on actin mRNA expression and survival. Our results demonstrated that injection is a reliable method of dsRNA delivery into bed bugs while topical treatment was not successful. This research provides an understanding on effective delivery methods of dsRNA into bed bugs for functional genomics research and feasibility of the RNAi based molecules for pest management purposes.
Collapse
Affiliation(s)
- Sanjay Basnet
- Department of Entomology, University of Nebraska, Lincoln, NE
| | - Shripat T Kamble
- Department of Entomology, University of Nebraska, Lincoln, NE
- Corresponding author, e-mail:
| |
Collapse
|
22
|
Pereira AE, Vélez AM, Meinke LJ, Siegfried BD. Sublethal Effects of vATPase-A and Snf7 dsRNAs on Biology of Southern Corn Rootworm, Diabrotica undecimpunctata howardi Barber. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2545-2553. [PMID: 29045668 DOI: 10.1093/jee/tox263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 06/07/2023]
Abstract
RNA interference is a powerful tool against corn rootworm. Adults and neonates of southern corn rootworm, Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae), were exposed to the LC50 of vATPase-A and Snf7 double-stranded RNAs (dsRNAs), and the effects on female fecundity, egg viability, male fitness as measured by sperm viability and mating capacity, larval recovery along with dry weight, and instar determination 10 d after exposure to dsRNA, were determined. Significant reductions were observed for a number of parameters in dsRNA-exposed rootworms relative to control treatments. Female fecundity and larval recovery were significantly reduced after exposure to both dsRNAs. In addition, larval dry weight and recovery of 2nd and 3rd instars along with dry weight for 3rd instars were significantly reduced after neonate exposure to vATPase-A dsRNA. Neither dsRNA affected male capacity to mate or sperm viability after exposure to the respective LC50s. After 10 d of feeding on untreated corn roots, neonates that survived exposure for 2 d to the vATPase-A dsRNA LC50 exhibited lower dry weight than the control. There was significant gene knockdown in adult males and females after exposure for 5 d to LC50 of vATPase-A and Snf7 dsRNAs. The parameters are discussed in terms of fitness and possible outcomes after deployment of corn hybrids expressing dsRNAs.
Collapse
Affiliation(s)
| | - Ana M Vélez
- Department of Entomology, University of Nebraska
| | | | | |
Collapse
|
23
|
Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, Diabrotica virgifera virgifera. Genes (Basel) 2016; 8:genes8010007. [PMID: 28029123 PMCID: PMC5295002 DOI: 10.3390/genes8010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023] Open
Abstract
Parental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field. In this study, we evaluated parameters required to generate a successful pRNAi response in WCR for the genes brahma and hunchback. The parameters tested included a concentration response, duration of the dsRNA exposure, timing of the dsRNA exposure with respect to the mating status in WCR females, and the effects of pRNAi on males. Results indicate that all of the above parameters affect the strength of pRNAi phenotype in females. Results are interpreted in terms of how this technology will perform in the field and the potential role for pRNAi in pest and resistance management strategies. More broadly, the described approaches enable examination of the dynamics of RNAi response in insects beyond pRNAi and crop pests.
Collapse
|
24
|
RNA Interference in Insect Vectors for Plant Viruses. Viruses 2016; 8:v8120329. [PMID: 27973446 PMCID: PMC5192390 DOI: 10.3390/v8120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
Collapse
|