1
|
Huang Q, Meng L, Liu Y, Zhu-Salzman K, Cheng W. Molecular Characterization and Expression of the Ecdysone Receptor and Ultraspiracle Genes in the Wheat Blossom Midge, Sitodiplosis mosellana. INSECTS 2025; 16:537. [PMID: 40429250 DOI: 10.3390/insects16050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/14/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
20-hydroxyecdysone (20E) is essential for insect development and diapause. Ecdysone receptor (EcR) and ultraspiracle (USP) proteins are crucial regulators of 20E signaling. To explore their potential roles in the development of Sitodiplosis mosellana, a major wheat pest that undergoes obligatory diapause as a larva, one SmEcR and two SmUSPs (SmUSP-A and SmUSP-B) from this species were isolated and characterized. The deduced SmEcR and SmUSP-A/B proteins contained a conserved DNA-binding domain with two zinc finger motifs that bind to specific DNA sequences. Expression of SmEcR and the SmUSPs was developmentally controlled, as was 20E induction. Their transcription levels increased as the larvae entered pre-diapause, followed by downregulation during diapause and upregulation during the shift to post-diapause quiescence, which is highly consistent with ecdysteroid titers in this species. Topical application of 20E to diapausing larvae also elicited a dose-dependent expression of the three genes. Expression of SmEcR and SmUSPs decreased markedly during the pre-pupal stage and was higher in adult females compared to males. These findings suggested that 20E-induced expression of SmEcR and SmUSPs has key roles in diapause initiation and maintenance, post-diapause quiescence, and adult reproduction, while the larval-pupal transformation may be associated with a decrease in their expression levels.
Collapse
Affiliation(s)
- Qitong Huang
- Shandong Institute of Sericulture, Jiaodong Innovation Center, Shandong Academy of Agricultural Sciences, Yantai 264002, China
| | - Linqing Meng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yuhan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Weining Cheng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Zhang J, Naveed H, Chen K, Chen L. Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates-A Review. TOXICS 2025; 13:47. [PMID: 39853045 PMCID: PMC11769487 DOI: 10.3390/toxics13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life but they cause certain impacts on the environment due to their unique carbon-fluorine chemical bonds that are difficult to degrade in the environment. Toxicological studies on PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of the food chain play a crucial role in the whole ecological chain, it is necessary to investigate the toxicity of PFASs to invertebrates. In this paper, the progress of toxicological studies on PFASs and their alternatives in terrestrial and aquatic invertebrates is reviewed, and the accumulation of PFASs, their toxicity in invertebrates, as well as the neurotoxicity and toxicity to reproduction and development are summarized. This provides a reference to in-depth studies on the comprehensive assessment of the toxicity of PFASs and their alternatives, promotes further research on PFASs in invertebrates, and provides valuable recommendations for the use and regulation of alternatives to PFASs.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| |
Collapse
|
3
|
Zhang L, Li Y, Xu X, Feng M, Turak R, Liu X, Pan H. Functional analysis of AgJHAMT gene related to developmental period in Aphis gossypii Glover. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:707-716. [PMID: 39328178 DOI: 10.1017/s000748532400049x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Aphis gossypii is one of the most economically important agricultural pests that cause serious crop losses worldwide, and the indiscriminate chemical application causes resistance development in A. gossypii, a major obstacle to successful control. In this study, we selected the up-regulated expression gene AgJHAMT, which was enriched into juvenile hormone pathway though transcriptome sequencing analysis of the cotton aphids that fed on transgenic cotton lines expressing dsAgCYP6CY3 (the TG cotton). The AgJHAMT gene was overexpressed in cotton aphids which fed on the TG cotton, and its expression profile during the nymphs was clarified. Then, silencing AgJHAMT could advance the developmental period of cotton aphids by 0.5 days compared with control groups. The T and t values of cotton aphids in the dsJHAMT treatment group (6.88 ± 0.15, 1.65 ± 0.06) were significantly shorter than that of the sprayed H2O control group (7.6 ± 0.14, 1.97 ± 0.09) (P < 0.05), respectively. The fast growth caused by AgJHAMT silencing was rescued by applying the JH analogue, methoprene. Overall, these findings clarified the function of AgJHAMT in the developmental period of A. gossypii. This study contributes to further clarify the molecular mechanisms of delaying the growth and development of cotton aphids by the transgenic cotton lines expressing dsAgCYP6CY3.
Collapse
Affiliation(s)
- Lianjun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yuan Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xinhui Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Mengmeng Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Rukiya Turak
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering/National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Hongsheng Pan
- National Plant Protection Scientific Observation and Experiment Station of Korla, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
4
|
Li Z, Wang L, Yi T, Liu D, Li G, Jin DC. The nuclear receptor gene E75 plays a key role in regulating the molting process of the spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:1-11. [PMID: 38112881 DOI: 10.1007/s10493-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
The nuclear receptor gene Ecdysone-induced protein 75 (E75), as the component of ecdysone response genes in the ecdysone signaling pathway, has important regulatory function for insect molting. However, the regulatory function of E75 during the molting process of spider mites is not yet clear. In this study, the expression pattern of E75 in the molting process of the spider mite Tetranychus urticae was analyzed. The results showed that there was a peak at 8 h post-molting, followed by a decline 8 h after entering each respective quiescent stage across various developmental stages. During the deutonymph stage, the expression dynamics of E75, observed at 4-h intervals, indicated that the transcript levels of TuE75 peaked at 24 h, coinciding with the onset of molting in the mites. To investigate the function of TuE75 during the molting process, silencing TuE75 through dsRNA injection into deutonymph mites at the age of 8 h yielded a notable outcome: 78% of the deutonymph mites were unable to progress to the adult stage. Among these phenotypic mites, 37% were incapable of transitioning into the quiescent state and eventually succumbed after a certain period. An additional 41% of the mites successfully entered the quiescent state but encountered difficulties in shedding the old epidermis, leading to eventual mortality. In summary, these results suggested that TuE75 plays a key role in the molting process of T. urticae.
Collapse
Affiliation(s)
- Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Liang Wang
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Dongdong Liu
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, 550025, China.
| |
Collapse
|
5
|
Wang L, Li Z, Yi T, Li G, Smagghe G, Jin D. Ecdysteroid Biosynthesis Halloween Gene Spook Plays an Important Role in the Oviposition Process of Spider Mite, Tetranychus urticae. Int J Mol Sci 2023; 24:14797. [PMID: 37834248 PMCID: PMC10573261 DOI: 10.3390/ijms241914797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In insects, the ecdysteroid hormone regulates development and reproduction. However, its function in the reproduction process of spider mites is still unclear. In this study, we investigated the effect of the Halloween gene Spook on the oviposition of the reproduction process in a spider mite, Tetranychus urticae. The expression patterns of the ecdysteroid biosynthesis and signaling pathway genes, as analyzed by RT-qPCR, showed that the expression pattern of the Halloween genes was similar to the oviposition pattern of the female mite and the expression patterns of the vitellogenesis-related genes TuVg and TuVgR, suggesting that the Halloween genes are involved in the oviposition of spider mites. To investigate the function of the ecdysteroid hormone on the oviposition of the reproduction process, we carried out an RNAi assay against the Halloween gene Spook by injection in female mites. Effective silencing of TuSpo led to a significant reduction of oviposition. In summary, these results provide an initial study on the effect of Halloween genes on the reproduction in T. urticae and may be a foundation for a new strategy to control spider mites.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| |
Collapse
|
6
|
Yu J, Song H, Wang Y, Liu Z, Wang H, Xu B. 20-hydroxyecdysone Upregulates Ecdysone Receptor (ECR) Gene to Promote Pupation in the Honeybee, Apis mellifera Ligustica. Integr Comp Biol 2023; 63:288-303. [PMID: 37365683 DOI: 10.1093/icb/icad077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
A heterodimeric complex of two nuclear receptors, the ecdysone receptor (ECR) and ultraspiracle (USP), transduces 20-hydroxyecdysone (20E) signaling to modulate insect growth and development. Here, we aimed to determine the relationship between ECR and 20E during larval metamorphosis and also the specific roles of ECR during larval-adult transition in Apis mellifera. We found that ECR gene expression peaked in the 7-day-old larvae, then decreased gradually from the pupae stage. 20E slowly reduced food consumption and then induced starvation, resulting in small-sized adults. In addition, 20E induced ECR expression to regulate larval development time. Double-stranded RNAs (dsRNAs) were prepared using common dsECR as templates. After dsECR injection, larval transition to the pupal stage was delayed, and 80% of the larvae showed prolonged pupation beyond 18 h. Moreover, the mRNA levels of shd, sro, nvd, and spo, and ecdysteroid titers were significantly decreased in ECR RNAi larvae compared with those in GFP RNAi control larvae. ECR RNAi disrupted 20E signaling during larval metamorphosis. We performed rescuing experiments by injecting 20E in ECR RNAi larvae and found that the mRNA levels of ECR, USP, E75, E93, and Br-c were not restored. 20E induced apoptosis in the fat body during larval pupation, while RNAi knockdown of ECR genes reduced apoptosis. We concluded that 20E induced ECR to modulate 20E signaling to promote honeybee pupation. These results assist our understanding of the complicated molecular mechanisms of insect metamorphosis.
Collapse
Affiliation(s)
- Jing Yu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Hongyu Song
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
7
|
Vasquez DDN, Pinheiro DH, Teixeira LA, Moreira-Pinto CE, Macedo LLP, Salles-Filho ALO, Silva MCM, Lourenço-Tessutti IT, Morgante CV, Silva LP, Grossi-de-Sa MF. Simultaneous silencing of juvenile hormone metabolism genes through RNAi interrupts metamorphosis in the cotton boll weevil. Front Mol Biosci 2023; 10:1073721. [PMID: 36950526 PMCID: PMC10025338 DOI: 10.3389/fmolb.2023.1073721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The cotton boll weevil (CBW) (Anthonomus grandis) is one of the major insect pests of cotton in Brazil. Currently, CBW control is mainly achieved by insecticide application, which is costly and insufficient to ensure effective crop protection. RNA interference (RNAi) has been used in gene function analysis and the development of insect control methods. However, some insect species respond poorly to RNAi, limiting the widespread application of this approach. Therefore, nanoparticles have been explored as an option to increase RNAi efficiency in recalcitrant insects. Herein, we investigated the potential of chitosan-tripolyphosphate (CS-TPP) and polyethylenimine (PEI) nanoparticles as a dsRNA carrier system to improve RNAi efficiency in the CBW. Different formulations of the nanoparticles with dsRNAs targeting genes associated with juvenile hormone metabolism, such as juvenile hormone diol kinase (JHDK), juvenile hormone epoxide hydrolase (JHEH), and methyl farnesoate hydrolase (MFE), were tested. The formulations were delivered to CBW larvae through injection (0.05-2 µg), and the expression of the target genes was evaluated using RT-qPCR. PEI nanoparticles increased targeted gene silencing compared with naked dsRNAs (up to 80%), whereas CS-TPP-dsRNA nanoparticles decreased gene silencing (0%-20%) or led to the same level of gene silencing as the naked dsRNAs (up to 50%). We next evaluated the effects of targeting a single gene or simultaneously targeting two genes via the injection of naked dsRNAs or dsRNAs complexed with PEI (500 ng) on CBW survival and phenotypes. Overall, the gene expression analysis showed that the treatments with PEI targeting either a single gene or multiple genes induced greater gene silencing than naked dsRNA (∼60%). In addition, the injection of dsJHEH/JHDK, either naked or complexed with PEI, significantly affected CBW survival (18% for PEI nanoparticles and 47% for naked dsRNA) and metamorphosis. Phenotypic alterations, such as uncompleted pupation or malformed pupae, suggested that JHEH and JHDK are involved in developmental regulation. Moreover, CBW larvae treated with dsJHEH/JHDK + PEI (1,000 ng/g) exhibited significantly lower survival rate (55%) than those that were fed the same combination of naked dsRNAs (30%). Our findings demonstrated that PEI nanoparticles can be used as an effective tool for evaluating the biological role of target genes in the CBW as they increase the RNAi response.
Collapse
Affiliation(s)
- Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
| | | | - Lays A. Teixeira
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
- Embrapa Café, Brasília, Brazil
| | | | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Alvaro L. O. Salles-Filho
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Federal University of Paraná, Curitiba, Brazil
| | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Carolina V. Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
- Embrapa SemiArid, Petrolina, Brazil
| | | | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
- *Correspondence: Maria F. Grossi-de-Sa,
| |
Collapse
|
8
|
Reproductive Outbreaks of Sogatella furcifera Mediated by Overexpression of the Nuclear Receptor USP under Pressure from Triflumezopyrim. Int J Mol Sci 2022; 23:ijms232213769. [PMID: 36430247 PMCID: PMC9698614 DOI: 10.3390/ijms232213769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Long-term pesticide-driven selection pressure is one of the main causes of insect outbreaks. In this study, we found that low doses of triflumezopyrim could increase the fecundity of white-backed planthoppers (Sogatella furcifera). By continuously screening 20 generations with a low dose of triflumezopyrim, a triflumezopyrim-resistant strain (Tri-strain, resistance ratio = 20.9-fold) was obtained. The average oviposition quantity and longevity of the Tri-strain (208.77 eggs and 21.31 days, respectively) were significantly higher than those of the susceptible strain (Sus-strain) (164.62 eggs and 17.85 days, respectively). To better understand the mechanism underlying the effects on reproduction, we detected the expression levels of several reproduction-related transcription factors in both the Tri- and Sus-strains. Ultraspiracle (USP) was significantly overexpressed in the Tri-strain. Knockdown of USP by RNAi severely inhibited the moulting process of S. furcifera and disrupted the development of female adult ovaries. Among the potential downstream target genes of USP, Kr-h1 (0.19-fold), Cht8 (0.56-fold) and GPCR A22 (0.31-fold) showed downregulated expression after USP-RNAi. In contrast, the expression of EcR (2.55-fold), which forms heterodimers with USP, was significantly upregulated. Furthermore, RNAi was performed on Kr-h1 in the Tri-strain, and the results show that larval moulting and the development of female adult ovaries were inhibited, consistent with the USP-RNAi results in S. furcifera. These results suggest that the transcription factors USP and Kr-h1 play important roles in the reproductive development of S. furcifera, and overexpression of USP and Kr-h1 in the Tri-resistant strain may result in reproductive outbreaks of pests.
Collapse
|
9
|
Hoang T, Foquet B, Rana S, Little DW, Woller DA, Sword GA, Song H. Development of RNAi Methods for the Mormon Cricket, Anabrus simplex (Orthoptera: Tettigoniidae). INSECTS 2022; 13:739. [PMID: 36005364 PMCID: PMC9409436 DOI: 10.3390/insects13080739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Mormon crickets are a major rangeland pest in the western United States and are currently managed by targeted applications of non-specific chemical insecticides, which can potentially have negative effects on the environment. In this study, we took the first steps toward developing RNAi methods for Mormon crickets as a potential alternative to traditional broad-spectrum insecticides. To design an effective RNAi-based insecticide, we first generated a de novo transcriptome for the Mormon cricket and developed dsRNAs that could silence the expression of seven housekeeping genes. We then characterized the RNAi efficiencies and time-course of knockdown using these dsRNAs, and assessed their ability to induce mortality. We have demonstrated that it is possible to elicit RNAi responses in the Mormon cricket by injection, but knockdown efficiencies and the time course of RNAi response varied according to target genes and tissue types. We also show that one of the reasons for the poor knockdown efficiencies could be the presence of dsRNA-degrading enzymes in the hemolymph. RNAi silencing is possible in Mormon cricket, but more work needs to be done before it can be effectively used as a population management method.
Collapse
Affiliation(s)
- Toan Hoang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Seema Rana
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Drew W. Little
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Derek A. Woller
- USDA-APHIS-PPQ-Science & Technology-Insect Management and Molecular Diagnostics Laboratory (Phoenix Station), Phoenix, AZ 85040, USA
| | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust. Int J Mol Sci 2022; 23:ijms23169232. [PMID: 36012497 PMCID: PMC9408901 DOI: 10.3390/ijms23169232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Ecdysteroids are widely investigated for their role during the molting cascade in insects; however, they are also involved in the development of the female reproductive system. Ecdysteroids are synthesized from cholesterol, which is further converted via a series of enzymatic steps into the main molting hormone, 20-hydoxyecdysone. Most of these biosynthetic conversion steps involve the activity of cytochrome P450 (CYP) hydroxylases, which are encoded by the Halloween genes. Three of these genes, spook (spo), phantom (phm) and shade (shd), were previously characterized in the desert locust, Schistocerca gregaria. Based on recent sequencing data, we have now identified the sequences of disembodied (dib) and shadow (sad), for which we also analyzed spatiotemporal expression profiles using qRT-PCR. Furthermore, we investigated the possible role(s) of five different Halloween genes in the oogenesis process by means of RNA interference mediated knockdown experiments. Our results showed that depleting the expression of SchgrSpo, SchgrSad and SchgrShd had a significant impact on oocyte development, oviposition and hatching of the eggs. Moreover, the shape of the growing oocytes, as well as the deposited eggs, was very drastically altered by the experimental treatments. Consequently, it can be proposed that these three enzymes play an important role in oogenesis.
Collapse
|
11
|
Zhou ZX, Dou W, Li CR, Wang JJ. CYP314A1-dependent 20-hydroxyecdysone biosynthesis is involved in regulating the development of pupal diapause and energy metabolism in the Chinese citrus fruit fly, Bactrocera minax. PEST MANAGEMENT SCIENCE 2022; 78:3384-3393. [PMID: 35514223 DOI: 10.1002/ps.6966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diapause is an environmentally preprogrammed period of arrested development, and characterized by metabolic depression that can occur during any development stage of insect. The insect steroid hormone 20-hydroxyecdysone (20E), is converted from ecdysone by the cytochrome P450 enzyme shade (CYP314A1), and it exerts a potent effect on the induction and maintenance of diapause in obligatory diapause insects. However, the regulatory mechanism of 20E in obligatory diapause development remains unclear. In this study, the function of 20E in the pupal diapause of Bactrocera minax was investigated. RESULTS We determined the expression pattern of Halloween P450 genes from larval to adult B. minax, and found differential expression of CYP314A1 from other P450 genes, with a high level in larvae and a low level in pupae. Dysfunction of CYP314A1 by dsCYP314A1 microinjection in third-instar larvae caused significant larval mortality or abnormal pupae. Compared with dsGFP and DEPC-water, dsCYP314A1-injected larvae had significantly reduced 20E titer and altered energy metabolism, and many individuals failed to pupate. Exogenous 20E microinjected into late third-instar larvae or 20E fed to early third-instar larvae both caused similar energy metabolism changes. The 20E-treated larvae of B. minax had reduced total lipids and increased amounts of trehalose and glycogen. Furthermore, 20E-treated diapause individuals showed rapid pupal development. CONCLUSION The 20E biosynthesis was regulated by the expression of CYP314A1, and was involved in the induction and termination phase of obligate diapause by regulating energy metabolism in B. minax. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chuan-Ren Li
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Van Lommel J, Lenaerts C, Delgouffe C, Vanden Broeck J. Knockdown of ecdysone receptor in male desert locusts affects relative weight of accessory glands and mating behavior. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104368. [PMID: 35134451 DOI: 10.1016/j.jinsphys.2022.104368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Locusts have been known as pests of agricultural crops for thousands of years. Recently (2018-2021) the world has faced the largest swarms of desert locusts, Schistocerca gregaria, in decades and food security in large parts of Africa and Asia was under extreme pressure. There is an urgent need for the development of highly specific bio-rational pesticides to combat these pests. However, to do so, fundamental research is needed to better understand the molecular mechanisms behind key physiological processes underpinning swarm formation, such as development and reproduction. The scope of this study is to investigate the possible role(s) of the ecdysteroid receptor in the reproductive physiology of male S. gregaria. Ecdysteroids and juvenile hormones are two important classes of insect hormones and are key regulators of post-embryonic development. Ecdysteroids are best known for their role in moulting and exert their function via a heterodimer consisting of the nuclear receptors ecdysone receptor (EcR) and retinoid-X receptor (RXR). To gain insight into the role of SgEcR and/or SgRXR in the male reproductive physiology of S. gregaria we performed RNAi-induced knockdown experiments. A knockdown of SgEcR, but not SgRXR, resulted in an increased relative weight of the male accessory glands (MAG). Furthermore, the knockdown of these genes, either in combination or separately, caused a significant delay in the onset of mating behavior. Nevertheless, the MAG appeared to mature normally and the fertility of mated males was not affected. The high transcript levels of SgEcR in the fat body, especially towards the end of sexual maturation in both males and females, represent a remarkable finding since as of yet the exact role of SgEcR in this tissue in S. gregaria is unknown. Finally, our data suggest that in some cases SgEcR and SgRXR might act independently of each other. This is supported by the fact that the spatiotemporal expression profiles of SgEcR and SgRXR do not always coincide and that knockdown of SgEcR, but not SgRXR, significantly affected the relative weight of the MAG.
Collapse
Affiliation(s)
- Joachim Van Lommel
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Cynthia Lenaerts
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Charlotte Delgouffe
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
13
|
Li G, Liu XY, Smagghe G, Niu JZ, Wang JJ. Molting process revealed by the detailed expression profiles of RXR1/RXR2 and mining the associated genes in a spider mite, Panonychus citri. INSECT SCIENCE 2022; 29:430-442. [PMID: 34015180 DOI: 10.1111/1744-7917.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Spider mites have one ecdysone receptor (EcR) and multiple retinoid X receptors (RXRs). However, the function of these RXRs in spider mite development is unknown. Here, we screened the expression dynamics of two PcRXR isoforms at 4 h intervals in the deutonymphal stage of Panonychus citri. The results showed that PcEcR had an expression pattern similar to that of PcRXR2. For PcRXR1, its expression remained at a certain high level, when there was a decrease of both PcEcR and PcRXR2. In situ hybridization showed that PcRXR2 was detected in the central nervous mass, while the ecdysteroid biosynthesis gene PcSpo was mainly expressed at the edge of the central nervous mass. RNAi-based silencing of PcRXR1 or PcRXR2 showed the same phenotype as in mites with that of silencing PcEcR. Furthermore, RNA-seq was used to mine the genes associated with the expression dynamics of PcRXR1 or PcRXR2, which revealed that the heterodimer of EcR-RXR2 in spider mites might be linked with the cell autophagy and tissue remodeling during apolysis, and RXR1 might be linked with new epicuticle and exocuticle secretion during ecdysis. Taken together, these results increase our understanding of the regulation mechanism of ecdysteroid signal pathway in spider mite development.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
| |
Collapse
|
14
|
Prothoracicostatic Activity of the Ecdysis-Regulating Neuropeptide Crustacean Cardioactive Peptide (CCAP) in the Desert Locust. Int J Mol Sci 2021; 22:ijms222413465. [PMID: 34948262 PMCID: PMC8704491 DOI: 10.3390/ijms222413465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/26/2023] Open
Abstract
Accurate control of innate behaviors associated with developmental transitions requires functional integration of hormonal and neural signals. Insect molting is regulated by a set of neuropeptides, which trigger periodic pulses in ecdysteroid hormone titers and coordinate shedding of the old cuticle during ecdysis. In the current study, we demonstrate that crustacean cardioactive peptide (CCAP), a structurally conserved neuropeptide described to induce the ecdysis motor program, also exhibits a previously unknown prothoracicostatic activity to regulate ecdysteroid production in the desert locust, Schistocerca gregaria. We identified the locust genes encoding the CCAP precursor and three G protein-coupled receptors that are activated by CCAP with EC50 values in the (sub)nanomolar range. Spatiotemporal expression profiles of the receptors revealed expression in the prothoracic glands, the endocrine organs where ecdysteroidogenesis occurs. RNAi-mediated knockdown of CCAP precursor or receptors resulted in significantly elevated transcript levels of several Halloween genes, which encode ecdysteroid biosynthesis enzymes, and in elevated ecdysteroid levels one day prior to ecdysis. Moreover, prothoracic gland explants exhibited decreased secretion of ecdysteroids in the presence of CCAP. Our results unequivocally identify CCAP as the first prothoracicostatic peptide discovered in a hemimetabolan species and reveal the existence of an intricate interplay between CCAP signaling and ecdysteroidogenesis.
Collapse
|
15
|
Li G, Zhang J, Liu XY, Niu J, Wang JJ. De novo RNA-Seq and Annotation of Sesquiterpenoid and Ecdysteroid Biosynthesis Genes and MicroRNAs in a Spider Mite Eotetranychus kankitus. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2543-2552. [PMID: 34668540 DOI: 10.1093/jee/toab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 06/13/2023]
Abstract
Eotetranychus kankitus is an important mite pest in citrus, but molecular data on the developmental processes of E. kankitus are lacking. The different development stages mix of E. kankitus was used to sequence for transcriptome and small RNAs to identify genes and predict miRNAs associated with sesquiterpenoid and ecdysteroid biosynthesis and signaling pathways. More than 36 million clean reads were assembled and 67,927 unigenes were generated. Of the unigenes, 19,300 were successfully annotated through annotation databases NR, SwissProt, COG, GO, KEGG, PFAM, and KOG. The transcripts were involved in sesquiterpenoid biosynthesis (11 genes) and ecdysteroid biosynthesis and signaling pathway (13 genes). Another, small RNA library was obtained and 31 conserved miRNAs were identified. Five most abundant miRNAs were Ek-miR-5735, Ek-miR-1, Ek-miR-263a, Ek-miR-184, and Ek-miR-8. The target genes related to sesquiterpenoid and ecdysteroid showed that 10 of the conserved miRNAs could potentially target the sesquiterpenoid and ecdysteroid pathway according to four-prediction software, sRNAT, miRanda, RNAhybrid, and Risearch2. Thus, the results of this study will provide bioinformatics information for further molecular studies of E. kankitus which may facilitate improved pest control strategies.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
16
|
Seyoum A, Kharlyngdoh JB, Paylar B, Olsson PE. Sublethal effects of DBE-DBCH diastereomers on physiology, behavior, and gene expression of Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117091. [PMID: 33901980 DOI: 10.1016/j.envpol.2021.117091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH) is a brominated flame retardant used in commercial and industrial applications. The use of DBE-DBCH containing products has resulted in an increased release into the environment. However, limited information is available on the long-term effects of DBE-DBCH and its effects in aquatic invertebrates. Thus, the present study was aimed at determining how DBE-DBCH diastereomers (αβ and γδ) affects aquatic invertebrates using Daphnia magna as a model organism. Survival, reproduction, feeding, swimming behavior and toxicogenomic responses to environmental relevant concentrations of DBE-DBCH were analyzed. Chronic exposure to DBE-DBCH resulted in decreased lifespan, and reduced fecundity. Expression of genes involved in reproductive processes, vtg1 and jhe, were also inhibited. DBE-DBCH also induced hypoxia by inhibiting the transcription of genes involved in heme biosynthesis and oxygen transport. Furthermore, DBE-DBCH also inhibited feeding resulting in emptiness of the alimentary canal. Increased expression of the stress response biomarkers was observed following DBE-DBCH exposure. In addition, DBE-DBCH diastereomers also altered the swimming behavior of Daphnia magna. The present study demonstrates that DBE-DBCH cause multiple deleterious effects on Daphnia magna, including effects on reproduction and hormonal systems. These endocrine disrupting effects are in agreement with effects observed on vertebrates. Furthermore, as is the case in vertebrates, DBE-DBCH γδ exerted stronger effects than DBE-DBCH αβ on Daphnia magna. This indicate that DBE-DBCH γδ has properties making it more toxic to all so far studied animals than DBE-DBCH αβ.
Collapse
Affiliation(s)
- Asmerom Seyoum
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Joubert Banjop Kharlyngdoh
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Berkay Paylar
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
17
|
Zhang Z, Ma Y, Ma X, Hu H, Wang D, Song X, Ren X, Ma Y. Combined Transcriptomic Analysis and RNA Interference Reveal the Effects of Methoxyfenozide on Ecdysone Signaling Pathway of Spodoptera exigua. Int J Mol Sci 2021; 22:ijms22169080. [PMID: 34445782 PMCID: PMC8396458 DOI: 10.3390/ijms22169080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/05/2022] Open
Abstract
Spodoptera exigua is a worldwide pest afflicting edible vegetables and has developed varying levels of resistance to insecticides. Methoxyfenozide (MET), an ecdysteroid agonist, is effective against lepidopteran pests such as S. exigua. However, the mechanism of MET to S. exigua remains unclear. In this study, we analyzed the expression patterns of genes related to the ecdysone signaling pathway in transcriptome data treated with sublethal doses of MET and analyzed how expression levels of key genes affect the toxicity of MET on S. exigua. Our results demonstrated that 2639 genes were up-regulated and 2512 genes were down-regulated in S. exigua treated with LC30 of MET. Of these, 15 genes were involved in the ecdysone signaling pathway. qPCR results demonstrated that ecdysone receptor A (EcRA) expression levels significantly increased in S. exigua when treated with different doses of MET, and that the RNAi-mediated silencing of EcRA significantly increased mortality to 55.43% at 72 h when L3 S. exigua larvae were exposed to MET at the LC30 dose. Additionally, knocking down EcRA suppressed the most genes expressed in the ecdysone signaling pathway. The combination of MET and dsEcRA affected the expression of E74 and enhanced the expression of TREA. These results demonstrate that the adverse effects of sublethal MET disturb the ecdysone signaling pathway in S. exigua, and EcRA is closely related to MET toxic effect. This study increases our collective understanding of the mechanisms of MET in insect pests.
Collapse
Affiliation(s)
- Zhixian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (Z.Z.); (X.M.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Xiaoyan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (Z.Z.); (X.M.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Xiangliang Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (Z.Z.); (X.M.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
- Correspondence: (X.R.); or (Y.M.)
| | - Yan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (Z.Z.); (X.M.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
- Correspondence: (X.R.); or (Y.M.)
| |
Collapse
|
18
|
Hou QL, Chen EH. RNA-seq analysis of gene expression changes in cuticles during the larval-pupal metamorphosis of Plutella xylostella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100869. [PMID: 34171685 DOI: 10.1016/j.cbd.2021.100869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is a holometabolous insect that its cuticles must undergo the significant changes during the larval-pupal metamorphosis development. To elucidate these changes at molecular levels, RNA-seq analysis of cuticles from LLS (later fourth instar larval stage), PPS (prepupal stage) and PS (pupal stage) were performed in P. xylostella. In this paper, a total of 17,710 transcripts were obtained in the larval-pupal transition of P. xylostella, and out of which 2293 (881 up-regulated and 1412 down-regulated) and 2989 transcripts (2062 up-regulated and 927 down-regulated) were identified to be differentially expressed between LLS and PPS, as well as PPS and PS, respectively. The further GO and KEGG analysis of differentially expressed genes (DEGs) revealed that the 'structural constituent of cuticle', 'chitin metabolic process', 'chitin binding', 'tyrosine metabolism' and 'insect hormone biosynthesis' pathways were significantly enriched, indicating these pathways might be involved in the process of larval pupation in P. xylostella. Then, we found some genes that encoded cuticular proteins, chitinolytic enzymes, chitin synthesis enzymes, and cuticle tanning proteins changed their expression levels remarkably, indicating these genes might play important roles in the restruction (degradation and biosynthesis) of insect cuticles during the larval metamorphosis. Additionally, the significant changes in the mRNA levels of 20-hydroxyecdysone (20E) and juvenile hormone (JH) related genes suggested their crucial roles in regulating cuticle remodeling during the larval metamorphosis of P. xylostella. In conclusion, the present study provide us the comprehensive gene expression profiles to explore the molecular mechanisms of cuticle metamorphosis in P. xylostella, which laid a molecular basis to study roles of specific pathways and genes in insect development.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
19
|
Gu SH, Chen CH, Lin PL. Changes in expressions of ecdysteroidogenic enzyme and ecdysteroid signaling genes in relation to Bombyx embryonic development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:477-488. [PMID: 33929096 DOI: 10.1002/jez.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 11/09/2022]
Abstract
Although the role of ecdysteroids in regulating egg diapause process in Bombyx mori is well documented, temporal changes in expression levels of genes involved in ecdysteroid biosynthesis and its downstream signaling are less well understood. In the present study, we studied changes in expression levels of genes involved in ecdysteroid biosynthesis and its downstream signaling during embryonic development of B. mori. Results showed that in diapause eggs, the expression of ecdysteroid-phosphate phosphatase (EPPase) gene and Halloween genes (Spook [Spo] and Shade [Shd]) remained at very low levels. However, in eggs whose diapause initiation was prevented by HCl, significant increases in the messenger RNA (mRNA) levels of EPPase, Spo, and Shd were detected during embryonic development. Other Halloween genes (Neverland [Nvd] and Phantom [Phm]) also showed different changes between diapause and HCl-treated eggs. However, genes of Disembodied (Dib) and Shadow (Sad) showed similar changes in both diapause and HCl-treated eggs. We further investigated changes in expression levels of ecdysone receptor genes (EcRA, EcRB1, and USP) and downstream signaling genes (E75A, E75B, E74A, E74B, Br-C, HR3, HR4, KR-H1, and FTZ-F1). Results showed that genes of EcRA and the other nuclear receptors (E75A, E75B, E74A, HR3, HR4, KR-H1, and FTZ-F1) exhibited significant differential patterns between diapause and HCl-treated eggs, with increased levels being detected during later stages of embryonic development in HCl-treated eggs. Differential temporal changes in expressions of genes involved ecdysteroid biosynthesis and its downstream signaling found between diapause and HCl-treated eggs were further confirmed using nondiapause eggs. Our results showed that nondiapause eggs exhibited the same changing patterns as those in HCl-treated eggs, thus clearly indicating potential correlations between expressions of these genes and embryonic development in B. mori. To our knowledge, this is the first comprehensive report to study the transcriptional regulation of ecdysteroidogenic and ecdysteroid signaling genes, thus providing useful information for a clearer understanding of insect egg diapause mechanisms.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, ROC
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, Tainan, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, ROC
| |
Collapse
|
20
|
Seyoum A, Pradhan A, Jass J, Olsson PE. Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139682. [PMID: 32521362 DOI: 10.1016/j.scitotenv.2020.139682] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 05/15/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFASs) are synthetic organofluorine compounds with unique stability accompanied with hydrophobic and lipophobic properties. Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) are of high concern due to their wide application in consumer and industrial products, extreme persistence, abundant occurrence in the environment and their toxic effect to humans and animals. However, knowledge on the molecular mechanisms of toxicity and the effects on reproduction output remain scarce. In this study, we analyzed the effects of PFOS and PFOA on Daphnia magna. Acute toxicity, development, reproduction, lipid metabolism (lipid-accumulation) and lifespan was investigated, as well as the expression of genes related to these endpoints. Exposure of PFOS and PFOA at 1, 10 and 25 μM did not cause acute lethality. Hatching was reduced following exposure to both compounds, and lifespan was decreased following exposure to 25 μM PFOS. Body length of Daphnia magna was reduced significantly by 25 μM PFOS following 7 days exposure. Lipid staining revealed that all PFAS exposures increased lipid accumulation. qRT-PCR analysis of genes involved in lipid metabolism suggests that the increase in lipid content could be due to inhibition of genes involved on absorption and catabolism of fatty acids. Exposure to both PFOA and PFOS reduced the fecundity significantly. Downregulation of genes involved in development and reproductive process, including vtg2, vasa, EcRA, EcRB, usp, jhe, HR3, ftz-F1, E74 and E75 were observed. The alterations in developmental and reproductive genes as well as the disturbed lipid metabolism provides mechanistic insight into the possible causes for decreased fecundity and lifespan observed following exposure to both PFOS and PFOA.
Collapse
Affiliation(s)
- Asmerom Seyoum
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Ajay Pradhan
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Jana Jass
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
21
|
Zhou X, Ye YZ, Ogihara MH, Takeshima M, Fujinaga D, Liu CW, Zhu Z, Kataoka H, Bao YY. Functional analysis of ecdysteroid biosynthetic enzymes of the rice planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103428. [PMID: 32553573 DOI: 10.1016/j.ibmb.2020.103428] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Ecdysteroids, insect steroid hormones, play key roles in regulating insect development and reproduction. Hemipteran insects require ecdysteroids for egg production; however, ecdysteroid synthesis (ecdysteroidogenesis) details have not been elucidated. We identified all known genes encoding ecdysteroidogenic enzymes in Nilaparvata lugens and clarified their necessity during nymphal and ovarian development. We confirmed that N. lugens utilized 20-hydroxyecdysone as an active hormone. Assays using heterologous expression of enzymes in Drosophila S2 cells showed conserved functions of enzymes Neverland, CYP306A2, CYP314A1 and CYP315A1, but not CYP302A1. RNA interference and rescue analysis using 20-hydroxyecdysone demonstrated that most of the genes were necessary for nymphal development. The identified N. lugens enzymes showed conserved functions and pathways for ecdysteroidogenesis. Knockdown of ecdysteroidogenic enzyme genes in newly molted females caused failure of egg production: less vitellogenic and mature eggs in ovaries, fewer laid eggs and embryonic development deficiency of laid eggs. Considering the high expressions of ecdysteroidogenic enzyme genes in adults and ovaries, ecdysteroidogenesis in ovaries was critical for N. lugens ovarian development. Our study presents initial evidence that hemipteran insects require ecdysteroidogenesis for ovarian development.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Zhou Ye
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Mari H Ogihara
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan; Present Address: Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Mika Takeshima
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Daiki Fujinaga
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Cheng-Wen Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Zhu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Shen CH, Xu QY, Mu LL, Fu KY, Guo WC, Li GQ. Involvement of Leptinotarsa hormone receptor 38 in the larval-pupal transition. Gene 2020; 751:144779. [DOI: 10.1016/j.gene.2020.144779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/16/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
|
23
|
He C, Liu S, Liang J, Zeng Y, Wang S, Wu Q, Xie W, Zhang Y. Genome-wide identification and analysis of nuclear receptors genes for lethal screening against Bemisia tabaci Q. PEST MANAGEMENT SCIENCE 2020; 76:2040-2048. [PMID: 31943718 DOI: 10.1002/ps.5738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/14/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nuclear receptors (NRs) play an essential role in diverse biological processes, such as insect metamorphosis. Here, transcriptome analysis and functional studies were used to determine whether NRs are involved in metamorphosis of whitefly Bemisia tabaci Q, a serious pest to crops, and to find some potential insecticide targets. RESULTS Twenty NRs were identified in the Bemisia tabaci Q genome and categorized into the NR0-NR6 subfamilies. The phylogenetic tree of NRs from Bemisia tabaci Q and other representative species was constructed, which provided evolutionary insight into their genetic distances. The results of spatiotemporal gene expression indicated that the majority of NR gene expression was higher in the head than the abdomen and higher in eggs than adults. Further functional analysis using RNA interference (RNAi) showed that NR genes play an important role in Bemisia tabaci Q pupation and eclosion. With respect to high mortality and effects on growth, this was reflected in the unable to become pupa when the third-stage nymph treated with double-stranded RNA (dsRNA) and the developmental time delay (4-7 days) when pupae were treated with dsRNA for the 12 NR genes during molting compared with the development time in the control. CONCLUSION This study provides insight into NR functions during the metamorphosis stages of Bemisia tabaci Q. Several candidate genes could be potential insecticide targets for whitefly pest control due to their important roles in insect development. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, P. R. China
| | - Jinjin Liang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
24
|
Xu Q, Deng P, Zhang Q, Li A, Fu K, Guo W, Li G. Ecdysone receptor isoforms play distinct roles in larval-pupal-adult transition in Leptinotarsa decemlineata. INSECT SCIENCE 2020; 27:487-499. [PMID: 30688001 PMCID: PMC7277042 DOI: 10.1111/1744-7917.12662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/31/2018] [Accepted: 01/22/2019] [Indexed: 05/25/2023]
Abstract
A heterodimer of two nuclear receptors, ecdysone receptor (EcR) and ultraspiracle, mediates 20-hydroxyecdysone (20E) signaling to modulate many aspects in insect life, such as molting and metamorphosis, reproduction, diapause and innate immunity. In the present paper, we intended to determine the isoform-specific roles of EcR during larval-pupal-adult transition in the Colorado potato beetle. Double-stranded RNAs (dsRNAs) were prepared using the common (dsEcR) or isoform-specific (dsEcRA, dsEcRB1) regions of EcR as templates. Ingestion of either dsEcR or dsEcRA, rather than dsEcRB1, by the penultimate (3rd) and final (4th) instar larvae caused failure of larval-pupal and pupal-adult ecdysis. The RNA interference (RNAi) larvae remained as prepupae, or became deformed pupae and adults. Determination of messenger RNA (mRNA) levels of EcR isoforms found that LdEcRA regulates the expression of LdEcRB1. Moreover, silencing the two EcR transcripts, LdEcRA or LdEcRB1 reduced the mRNA levels of Ldspo and Ldsad, and lowered 20E titer. In contrast, the expression levels of HR3, HR4, E74 and E75 were significantly decreased in the LdEcR or LdEcRA RNAi larvae, but not in LdEcRB1 depleted specimens. Dietary supplement with 20E did not restore the expression of five 20E signaling genes (USP, HR3, HR4, E74 and E75), and only partially alleviated the pupation defects in dsEcR- or dsEcRA-fed beetles. These data suggest that EcR plays isoform-specific roles in the regulation of ecdysteroidogenesis and the transduction of 20E signal in L. decemlineata.
Collapse
Affiliation(s)
- Qing‐Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Pan Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Qiong Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Ang Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Kai‐Yun Fu
- Institute of Plant ProtectionXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Wen‐Chao Guo
- Institute of Microbiological ApplicationXinjiang Academy of Agricultural ScienceUrumqiChina
| | - Guo‐Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
25
|
Song J, Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell Mol Life Sci 2020; 77:1893-1909. [PMID: 31724082 PMCID: PMC11105025 DOI: 10.1007/s00018-019-03361-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Metamorphic transformation from larvae to adults along with the high fecundity is key to insect success. Insect metamorphosis and reproduction are governed by two critical endocrines, juvenile hormone (JH), and 20-hydroxyecdysone (20E). Recent studies have established a crucial role of microRNA (miRNA) in insect metamorphosis and oogenesis. While miRNAs target genes involved in JH and 20E-signaling pathways, these two hormones reciprocally regulate miRNA expression, forming regulatory loops of miRNA with JH and 20E-signaling cascades. Insect metamorphosis and oogenesis rely on the coordination of hormones, cognate genes, and miRNAs for precise regulation. In addition, the alternative splicing of genes in JH and 20E-signaling pathways has distinct functions in insect metamorphosis and oogenesis. We, therefore, focus in this review on recent advances in post-transcriptional regulation, with the emphasis on the regulatory role of miRNA and alternative splicing, in insect metamorphosis and oogenesis. We will highlight important new findings of miRNA interactions with hormonal signaling and alternative splicing of JH receptor heterodimer gene Taiman.
Collapse
Affiliation(s)
- Jiasheng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
26
|
Konopová B, Buchberger E, Crisp A. Transcriptome of pleuropodia from locust embryos supports that these organs produce enzymes enabling the larva to hatch. Front Zool 2020; 17:4. [PMID: 31969926 PMCID: PMC6966819 DOI: 10.1186/s12983-019-0349-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background Pleuropodia are limb-derived glandular organs that transiently appear on the first abdominal segment in embryos of insects from majority of “orders”. They are missing in the genetic model Drosophila and little is known about them. Experiments carried out on orthopteran insects 80 years ago indicated that the pleuropodia secrete a “hatching enzyme” that digests the serosal cuticle to enable the larva to hatch, but evidence by state-of-the-art molecular methods is missing. Results We used high-throughput RNA-sequencing to identify the genes expressed in the pleuropodia of the locust Schistocerca gregaria (Orthoptera). First, using transmission electron microscopy we studied the development of the pleuropodia during 11 stages of the locust embryogenesis. We show that the glandular cells differentiate and start secreting just before the definitive dorsal closure of the embryo and the secretion granules outside the cells become more abundant prior to hatching. Next, we generated a comprehensive embryonic reference transcriptome for the locust and used it to study genome wide gene expression across ten morphologicaly defined stages of the pleuropodia. We show that when the pleuropodia have morphological markers of functional organs and produce secretion, they are primarily enriched in transcripts associated with transport functions. They express genes encoding enzymes capable of digesting cuticular protein and chitin. These include the potent cuticulo-lytic Chitinase 5, whose transcript rises just before hatching. Unexpected finding was the enrichment in transcripts for immunity-related enzymes. This indicates that the pleuropodia are equipped with epithelial immunity similarly as barrier epithelia in postembryonic stages. Conclusions These data provide transcriptomic support for the historic hypothesis that pleuropodia produce cuticle-degrading enzymes and function in hatching. They may also have other functions, such as facilitation of embryonic immune defense. By the genes that they express the pleuropodia are specialized embryonic organs and apparently an important though neglected part of insect physiology.
Collapse
Affiliation(s)
- Barbora Konopová
- 1Department of Zoology, University of Cambridge, Cambridge, UK.,2Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany.,Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Elisa Buchberger
- 4Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
27
|
Xu QY, Deng P, Li A, Zhang Q, Mu LL, Fu KY, Guo WC, Li GQ. Functional characterization of ultraspiracle in Leptinotarsa decemlineata using RNA interference assay. INSECT MOLECULAR BIOLOGY 2019; 28:676-688. [PMID: 30834617 DOI: 10.1111/imb.12580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A heterodimer of ultraspiracle (USP) and ecdysone receptor (EcR) mediates 20-hydroxyecdysone (20E) signalling cascade to regulate insect moulting and metamorphosis. However, at least two questions remain to be addressed in terms of the molecular importance of USP in insect species. First, is USP involved in both regulation of ecdysteroidogenesis and mediation of 20E signalling in non-drosophilid insects, as in Drosophila melanogaster? Second, does USP play any role in larval metamorphosis except as the partner of heterodimeric receptor to activate the downstream 20E signalling genes? In this paper, we found that RNA interference (RNAi) of LdUSP in the final (fourth) instar larvae reduced the messenger RNA levels of four ecdysteroidogenesis genes (Ldspo, Ldphm, Lddib and Ldsad) and 20E titre, and repressed the expression of five 20E signal genes (EcRA, HR3, HR4, E74 and E75) in Leptinotarsa decemlineata. The LdUSP RNAi larvae remained as prepupae, with developing antennae, legs and discs of forewings and hindwings. Dietary supplement with 20E restored the expression of the five 20E signal genes, but only partially alleviated the decreased pupation rate in LdUSP RNAi beetles. Knockdown of LdUSP at the penultimate (third) instar larvae did not affect third-fourth instar moulting. However, silencing LdUSP caused similar but less severe impairments on pupation. Accordingly, we propose that USP is undoubtedly necessary for ecdysteroidogenesis, for mediation of 20E signalling and for initiation of metamorphosis in L. decemlineata.
Collapse
Affiliation(s)
- Q-Y Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - P Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - A Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - L-L Mu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Integrated Management of Harmful Crop Vermin of China North-western Oasis, Ministry of Agriculture, Urumqi, China
| | - W-C Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Li G, Sun QZ, Liu XY, Zhang J, Dou W, Niu JZ, Wang JJ. Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:361-372. [PMID: 31254229 DOI: 10.1007/s10493-019-00396-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
In insects, the ecdysteroid 20-hydroxyecdysone coordinates with juvenile hormone (JH) to regulate the process of molting, development and metamorphosis; however, this interaction is still unclear in the mites. In this study, we investigated the gene related to ecdysteroid and JH biosynthesis pathways, including four ecdysteroid and 11 JH biosynthesis genes. We examined their expression patterns during molting of different developmental stages of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), an important agricultural pest that feeds on more than 1100 plant species. The expression of ecdysteroid biosynthesis Halloween genes exhibited a positive zigzag-like pattern, with a peak after 8 h of molting and a drop 8 h after entering each quiescent stage. In contrast, JH biosynthesis genes expression displayed a negative zigzag-like pattern, with a peak at 8 h after entering each quiescent stage and a drop after 8 h of each molting. These opposite patterns imply that ecdysteroid and JH expression is coordinated during the developmental transition. Our data provide an initial perspective on the co-expression of ecdysteroid and JH biosynthesis genes to regulate this important developmental process in the two-spotted spider mite.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Qin-Zhe Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
29
|
Swevers L. An update on ecdysone signaling during insect oogenesis. CURRENT OPINION IN INSECT SCIENCE 2019; 31:8-13. [PMID: 31109678 DOI: 10.1016/j.cois.2018.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/04/2018] [Indexed: 06/09/2023]
Abstract
An overview is presented of the different functions of ecdysone signaling during insect oogenesis. An extensive genetic toolkit allowed analysis with unprecedented temporal and spatial detail in Drosophila where functions were revealed in stem cell proliferation and niche maintenance, germline cyst differentiation and follicle formation, integration of nutrient and lipid signaling, follicle maturation and ovulation. Besides putative autocrine/paracrine signaling, hormonal networks were identified that integrate ecdysone with other endocrine signaling pathways. In other insects, progress in oogenesis has lagged behind although recently RNAi emerged as a new tool to analyze gene function in ovaries in hemimetabolous insects and Tribolium.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, NCSR "Demokritos", Aghia Paraskevi, Greece.
| |
Collapse
|
30
|
Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck JV. RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Front Physiol 2019; 9:1912. [PMID: 30687124 PMCID: PMC6336832 DOI: 10.3389/fphys.2018.01912] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Insects constitute the largest and most diverse group of animals on Earth with an equally diverse virome. The main antiviral immune system of these animals is the post-transcriptional gene-silencing mechanism known as RNA(i) interference. Furthermore, this process can be artificially triggered via delivery of gene-specific double-stranded RNA molecules, leading to specific endogenous gene silencing. This is called RNAi technology and has important applications in several fields. In this paper, we review RNAi mechanisms in insects as well as the potential of RNAi technology to contribute to species-specific insecticidal strategies. Regarding this aspect, we cover the range of strategies considered and investigated so far, as well as their limitations and the most promising approaches to overcome them. Additionally, we discuss patterns of viral infection, specifically persistent and acute insect viral infections. In the latter case, we focus on infections affecting economically relevant species. Within this scope, we review the use of insect-specific viruses as bio-insecticides. Last, we discuss RNAi-based strategies to protect beneficial insects from harmful viral infections and their potential practical application. As a whole, this manuscript stresses the impact of insect viruses and RNAi technology in human life, highlighting clear lines of investigation within an exciting and promising field of research.
Collapse
|
31
|
Lenaerts C, Marchal E, Peeters P, Vanden Broeck J. The ecdysone receptor complex is essential for the reproductive success in the female desert locust, Schistocerca gregaria. Sci Rep 2019; 9:15. [PMID: 30626886 PMCID: PMC6327042 DOI: 10.1038/s41598-018-36763-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/21/2018] [Indexed: 02/08/2023] Open
Abstract
Ecdysteroid hormones influence the development and reproduction of arthropods by binding a heterodimeric complex of nuclear receptors, the ecdysone receptor (EcR) and the retinoid-X-receptor/ultraspiracle (RXR/USP). Here, we report on the in vivo role(s) of the ecdysone receptor complex, SchgrEcR/SchgrRXR, in the female reproductive physiology of a major phytophagous pest insect, i.e. the desert locust, Schistocerca gregaria. Tissue and temporal distribution profiles were analysed during the first gonadotrophic cycle of adult female locusts. RNA interference was used as a reverse genetics tool to investigate the in vivo role of the ecdysone receptor complex in ovarian maturation, oogenesis, fertility and fecundity. We discovered that silencing the ecdysone receptor complex in S. gregaria resulted in impaired ovulation and oviposition, indicative for a crucial role of this complex in chorion formation. We also found evidence for a feedback of SchgrEcR/SchgrRXR on juvenile hormone biosynthesis by the corpora allata. Furthermore, we observed a tissue-dependent effect of the SchgrEcR/SchgrRXR knockdown on the transcript levels of the insulin receptor and neuroparsin 3 and 4. The insulin receptor transcript levels were upregulated in the brain, but not the fat body and gonads. Neuroparsins 3 and 4 transcript levels were down regulated in the brain and fat body, but not in the gonads.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular and Developmental Physiology and Signal Transduction research group, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular and Developmental Physiology and Signal Transduction research group, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Paulien Peeters
- Molecular and Developmental Physiology and Signal Transduction research group, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular and Developmental Physiology and Signal Transduction research group, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
32
|
Structure and function of the alternatively spliced isoforms of the ecdysone receptor gene in the Chinese mitten crab, Eriocheir sinensis. Sci Rep 2017; 7:12993. [PMID: 29021633 PMCID: PMC5636884 DOI: 10.1038/s41598-017-13474-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/26/2017] [Indexed: 11/10/2022] Open
Abstract
Alternative splicing is an essential molecular mechanism that increase the protein diversity of a species to regulate important biological processes. Ecdysone receptor (EcR), an essential nuclear receptor, is essential in the molting, growth, development, reproduction, and regeneration of crustaceans. In this study, the whole sequence of EcR gene from Eriocheir sinensis was obtained. The sequence was 45,481 bp in length with 9 exons. Moreover, four alternatively spliced EcR isoforms (Es-EcR-1, Es-EcR-2, Es-EcR-3 and Es-EcR-4) were identified. The four isoforms harbored a common A/B domain and a DNA-binding region but different D domains and ligand-binding regions. Three alternative splicing patterns (alternative 5′ splice site, exon skipping, and intron retention) were identified in the four isoforms. Functional studies indicated that the four isoforms have specific functions. Es-EcR-3 may play essential roles in regulating periodic molting. Es-EcR-2 may participate in the regulation of ovarian development. Our results indicated that Es-EcR has broad regulatory functions in molting and development and established the molecular basis for the investigation of ecdysteroid signaling related pathways in E. sinensis.
Collapse
|
33
|
Sugahara R, Tanaka S, Shiotsuki T. RNAi-mediated knockdown of SPOOK reduces ecdysteroid titers and causes precocious metamorphosis in the desert locust Schistocerca gregaria. Dev Biol 2017; 429:71-80. [DOI: 10.1016/j.ydbio.2017.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
34
|
The ecdysis triggering hormone system is essential for successful moulting of a major hemimetabolous pest insect, Schistocerca gregaria. Sci Rep 2017; 7:46502. [PMID: 28417966 PMCID: PMC5394484 DOI: 10.1038/srep46502] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
Insects are enclosed in a rigid exoskeleton, providing protection from desiccation and mechanical injury. To allow growth, this armour needs to be replaced regularly in a process called moulting. Moulting entails the production of a new exoskeleton and shedding of the old one and is induced by a pulse in ecdysteroids, which activates a peptide-mediated signalling cascade. In Holometabola, ecdysis triggering hormone (ETH) is the key factor in this cascade. Very little functional information is available in Hemimetabola, which display a different kind of development characterized by gradual changes. This paper reports on the identification of the ETH precursor and the pharmacological and functional characterisation of the ETH receptor in a hemimetabolous pest species, the desert locust, Schistocerca gregaria. Activation of SchgrETHR by SchgrETH results in an increase of both Ca2+ and cyclic AMP, suggesting that SchgrETHR displays dual coupling properties in an in vitro cell-based assay. Using qRT-PCR, an in-depth profiling study of SchgrETH and SchgrETHR transcripts was performed. Silencing of SchgrETH and SchgrETHR resulted in lethality at the expected time of ecdysis, thereby showing their crucial role in moulting.
Collapse
|
35
|
Abrieux A, Chiu JC. Oral delivery of dsRNA by microbes: Beyond pest control. Commun Integr Biol 2016; 9:e1236163. [PMID: 28042376 PMCID: PMC5193050 DOI: 10.1080/19420889.2016.1236163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) by oral delivery of dsRNA in insects has great potential as a tool for integrated pest management (IPM), especially with respect to addressing the need to reduce off-target effect and slow down resistance development to chemical insecticides. Employing the natural association existing between insect and yeast, we developed a novel method to enable the knock down of vital genes in the pest insect Drosophila suzukii through oral delivery of species-specific dsRNA using genetically modified Saccharomyces cerevisae. D. suzukii that were fed with our “yeast biopesticide” showed a significant decrease in fitness. In this perspective article, we postulate that this approach could be adapted to a large number of species, given the great diversity of symbiotic interactions involving microorganisms and host species. Furthermore, we speculate that beyond its application as biopesticide, dsRNA delivery by genetically modified microbes can also serve to facilitate reverse genetic applications, specifically in non-model organisms.
Collapse
Affiliation(s)
- Antoine Abrieux
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California , Davis, CA, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California , Davis, CA, USA
| |
Collapse
|